Skip to content

Commit

Permalink
Merge branch 'release_candidate'
Browse files Browse the repository at this point in the history
  • Loading branch information
AUTOMATIC1111 committed Apr 13, 2024
2 parents bef51ae + d282d24 commit adadb4e
Show file tree
Hide file tree
Showing 109 changed files with 1,957 additions and 781 deletions.
2 changes: 2 additions & 0 deletions .eslintrc.js
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,8 @@ module.exports = {
//extraNetworks.js
requestGet: "readonly",
popup: "readonly",
// profilerVisualization.js
createVisualizationTable: "readonly",
// from python
localization: "readonly",
// progrssbar.js
Expand Down
10 changes: 5 additions & 5 deletions .github/workflows/on_pull_request.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,16 +11,16 @@ jobs:
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
steps:
- name: Checkout Code
uses: actions/checkout@v3
- uses: actions/setup-python@v4
uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: 3.11
# NB: there's no cache: pip here since we're not installing anything
# from the requirements.txt file(s) in the repository; it's faster
# not to have GHA download an (at the time of writing) 4 GB cache
# of PyTorch and other dependencies.
- name: Install Ruff
run: pip install ruff==0.1.6
run: pip install ruff==0.3.3
- name: Run Ruff
run: ruff .
lint-js:
Expand All @@ -29,9 +29,9 @@ jobs:
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
steps:
- name: Checkout Code
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Install Node.js
uses: actions/setup-node@v3
uses: actions/setup-node@v4
with:
node-version: 18
- run: npm i --ci
Expand Down
10 changes: 5 additions & 5 deletions .github/workflows/run_tests.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,9 @@ jobs:
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
steps:
- name: Checkout Code
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up Python 3.10
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: 3.10.6
cache: pip
Expand All @@ -22,7 +22,7 @@ jobs:
launch.py
- name: Cache models
id: cache-models
uses: actions/cache@v3
uses: actions/cache@v4
with:
path: models
key: "2023-12-30"
Expand Down Expand Up @@ -68,13 +68,13 @@ jobs:
python -m coverage report -i
python -m coverage html -i
- name: Upload main app output
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
if: always()
with:
name: output
path: output.txt
- name: Upload coverage HTML
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
if: always()
with:
name: htmlcov
Expand Down
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -38,3 +38,4 @@ notification.mp3
/package-lock.json
/.coverage*
/test/test_outputs
/cache
144 changes: 133 additions & 11 deletions CHANGELOG.md

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-di
- [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended)
- [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
- [Intel CPUs, Intel GPUs (both integrated and discrete)](https://github.com/openvinotoolkit/stable-diffusion-webui/wiki/Installation-on-Intel-Silicon) (external wiki page)
- [Ascend NPUs](https://github.com/wangshuai09/stable-diffusion-webui/wiki/Install-and-run-on-Ascend-NPUs) (external wiki page)

Alternatively, use online services (like Google Colab):

Expand Down
5 changes: 5 additions & 0 deletions _typos.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
[default.extend-words]
# Part of "RGBa" (Pillow's pre-multiplied alpha RGB mode)
Ba = "Ba"
# HSA is something AMD uses for their GPUs
HSA = "HSA"
8 changes: 4 additions & 4 deletions extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,7 +301,7 @@ def p_losses(self, x_start, t, noise=None):
elif self.parameterization == "x0":
target = x_start
else:
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")

loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])

Expand Down Expand Up @@ -880,7 +880,7 @@ def forward(self, x, c, *args, **kwargs):
def apply_model(self, x_noisy, t, cond, return_ids=False):

if isinstance(cond, dict):
# hybrid case, cond is exptected to be a dict
# hybrid case, cond is expected to be a dict
pass
else:
if not isinstance(cond, list):
Expand Down Expand Up @@ -916,7 +916,7 @@ def apply_model(self, x_noisy, t, cond, return_ids=False):
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]

elif self.cond_stage_key == 'coordinates_bbox':
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
assert 'original_image_size' in self.split_input_params, 'BoundingBoxRescaling is missing original_image_size'

# assuming padding of unfold is always 0 and its dilation is always 1
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
Expand All @@ -926,7 +926,7 @@ def apply_model(self, x_noisy, t, cond, return_ids=False):
num_downs = self.first_stage_model.encoder.num_resolutions - 1
rescale_latent = 2 ** (num_downs)

# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
# get top left positions of patches as conforming for the bbbox tokenizer, therefore we
# need to rescale the tl patch coordinates to be in between (0,1)
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
Expand Down
2 changes: 1 addition & 1 deletion extensions-builtin/Lora/lyco_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
Because of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
examples)
factor
Expand Down
34 changes: 33 additions & 1 deletion extensions-builtin/Lora/network.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ def __init__(self, name, filename):

def read_metadata():
metadata = sd_models.read_metadata_from_safetensors(filename)
metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text

return metadata

Expand Down Expand Up @@ -117,6 +116,12 @@ def __init__(self, net: Network, weights: NetworkWeights):

if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
elif isinstance(self.sd_module, nn.MultiheadAttention):
# For now, only self-attn use Pytorch's MHA
# So assume all qkvo proj have same shape
self.shape = self.sd_module.out_proj.weight.shape
else:
self.shape = None

self.ops = None
self.extra_kwargs = {}
Expand Down Expand Up @@ -146,6 +151,9 @@ def __init__(self, net: Network, weights: NetworkWeights):
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
self.scale = weights.w["scale"].item() if "scale" in weights.w else None

self.dora_scale = weights.w.get("dora_scale", None)
self.dora_norm_dims = len(self.shape) - 1

def multiplier(self):
if 'transformer' in self.sd_key[:20]:
return self.network.te_multiplier
Expand All @@ -160,6 +168,27 @@ def calc_scale(self):

return 1.0

def apply_weight_decompose(self, updown, orig_weight):
# Match the device/dtype
orig_weight = orig_weight.to(updown.dtype)
dora_scale = self.dora_scale.to(device=orig_weight.device, dtype=updown.dtype)
updown = updown.to(orig_weight.device)

merged_scale1 = updown + orig_weight
merged_scale1_norm = (
merged_scale1.transpose(0, 1)
.reshape(merged_scale1.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(merged_scale1.shape[1], *[1] * self.dora_norm_dims)
.transpose(0, 1)
)

dora_merged = (
merged_scale1 * (dora_scale / merged_scale1_norm)
)
final_updown = dora_merged - orig_weight
return final_updown

def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
Expand All @@ -175,6 +204,9 @@ def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
if ex_bias is not None:
ex_bias = ex_bias * self.multiplier()

if self.dora_scale is not None:
updown = self.apply_weight_decompose(updown, orig_weight)

return updown * self.calc_scale() * self.multiplier(), ex_bias

def calc_updown(self, target):
Expand Down
14 changes: 7 additions & 7 deletions extensions-builtin/Lora/network_oft.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,13 +36,6 @@ def __init__(self, net: network.Network, weights: network.NetworkWeights):
# self.alpha is unused
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)

# LyCORIS BOFT
if self.oft_blocks.dim() == 4:
self.is_boft = True
self.rescale = weights.w.get('rescale', None)
if self.rescale is not None:
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))

is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
Expand All @@ -54,6 +47,13 @@ def __init__(self, net: network.Network, weights: network.NetworkWeights):
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim

# LyCORIS BOFT
if self.oft_blocks.dim() == 4:
self.is_boft = True
self.rescale = weights.w.get('rescale', None)
if self.rescale is not None and not is_other_linear:
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))

self.num_blocks = self.dim
self.block_size = self.out_dim // self.dim
self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim
Expand Down
11 changes: 7 additions & 4 deletions extensions-builtin/Lora/networks.py
Original file line number Diff line number Diff line change
Expand Up @@ -355,7 +355,7 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
"""
Applies the currently selected set of networks to the weights of torch layer self.
If weights already have this particular set of networks applied, does nothing.
If not, restores orginal weights from backup and alters weights according to networks.
If not, restores original weights from backup and alters weights according to networks.
"""

network_layer_name = getattr(self, 'network_layer_name', None)
Expand Down Expand Up @@ -429,9 +429,12 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
try:
with torch.no_grad():
updown_q, _ = module_q.calc_updown(self.in_proj_weight)
updown_k, _ = module_k.calc_updown(self.in_proj_weight)
updown_v, _ = module_v.calc_updown(self.in_proj_weight)
# Send "real" orig_weight into MHA's lora module
qw, kw, vw = self.in_proj_weight.chunk(3, 0)
updown_q, _ = module_q.calc_updown(qw)
updown_k, _ = module_k.calc_updown(kw)
updown_v, _ = module_v.calc_updown(vw)
del qw, kw, vw
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)

Expand Down
2 changes: 2 additions & 0 deletions extensions-builtin/Lora/ui_edit_user_metadata.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,6 +149,8 @@ def generate_random_prompt_from_tags(self, tags):

v = random.random() * max_count
if count > v:
for x in "({[]})":
tag = tag.replace(x, '\\' + x)
res.append(tag)

return ", ".join(sorted(res))
Expand Down
2 changes: 1 addition & 1 deletion extensions-builtin/Lora/ui_extra_networks_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def create_item(self, name, index=None, enable_filter=True):
"name": name,
"filename": lora_on_disk.filename,
"shorthash": lora_on_disk.shorthash,
"preview": self.find_preview(path),
"preview": self.find_preview(path) or self.find_embedded_preview(path, name, lora_on_disk.metadata),
"description": self.find_description(path),
"search_terms": search_terms,
"local_preview": f"{path}.{shared.opts.samples_format}",
Expand Down
Loading

0 comments on commit adadb4e

Please sign in to comment.