Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Leverage dpctl.tensor.repeat() implementation #1614

Merged
merged 6 commits into from
Nov 16, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 0 additions & 4 deletions dpnp/backend/include/dpnp_iface_fptr.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -176,8 +176,6 @@ enum class DPNPFuncName : size_t
DPNP_FN_FILL_DIAGONAL_EXT, /**< Used in numpy.fill_diagonal() impl, requires
extra parameters */
DPNP_FN_FLATTEN, /**< Used in numpy.flatten() impl */
DPNP_FN_FLATTEN_EXT, /**< Used in numpy.flatten() impl, requires extra
npolina4 marked this conversation as resolved.
Show resolved Hide resolved
parameters */
DPNP_FN_FLOOR, /**< Used in numpy.floor() impl */
DPNP_FN_FLOOR_DIVIDE, /**< Used in numpy.floor_divide() impl */
DPNP_FN_FLOOR_DIVIDE_EXT, /**< Used in numpy.floor_divide() impl, requires
Expand Down Expand Up @@ -259,8 +257,6 @@ enum class DPNPFuncName : size_t
DPNP_FN_RECIP_EXT, /**< Used in numpy.recip() impl, requires extra
parameters */
DPNP_FN_REPEAT, /**< Used in numpy.repeat() impl */
DPNP_FN_REPEAT_EXT, /**< Used in numpy.repeat() impl, requires extra
parameters */
DPNP_FN_RIGHT_SHIFT, /**< Used in numpy.right_shift() impl */
DPNP_FN_RNG_BETA, /**< Used in numpy.random.beta() impl */
DPNP_FN_RNG_BETA_EXT, /**< Used in numpy.random.beta() impl, requires extra
Expand Down
13 changes: 0 additions & 13 deletions dpnp/backend/kernels/dpnp_krnl_elemwise.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -940,19 +940,6 @@ static void func_map_init_elemwise_1arg_1type(func_map_t &fmap)
fmap[DPNPFuncName::DPNP_FN_FLATTEN][eft_C128][eft_C128] = {
eft_C128, (void *)dpnp_copy_c_default<std::complex<double>>};

fmap[DPNPFuncName::DPNP_FN_FLATTEN_EXT][eft_BLN][eft_BLN] = {
eft_BLN, (void *)dpnp_copy_c_ext<bool>};
fmap[DPNPFuncName::DPNP_FN_FLATTEN_EXT][eft_INT][eft_INT] = {
eft_INT, (void *)dpnp_copy_c_ext<int32_t>};
fmap[DPNPFuncName::DPNP_FN_FLATTEN_EXT][eft_LNG][eft_LNG] = {
eft_LNG, (void *)dpnp_copy_c_ext<int64_t>};
fmap[DPNPFuncName::DPNP_FN_FLATTEN_EXT][eft_FLT][eft_FLT] = {
eft_FLT, (void *)dpnp_copy_c_ext<float>};
fmap[DPNPFuncName::DPNP_FN_FLATTEN_EXT][eft_DBL][eft_DBL] = {
eft_DBL, (void *)dpnp_copy_c_ext<double>};
fmap[DPNPFuncName::DPNP_FN_FLATTEN_EXT][eft_C128][eft_C128] = {
eft_C128, (void *)dpnp_copy_c_ext<std::complex<double>>};

fmap[DPNPFuncName::DPNP_FN_NEGATIVE][eft_INT][eft_INT] = {
eft_INT, (void *)dpnp_negative_c_default<int32_t>};
fmap[DPNPFuncName::DPNP_FN_NEGATIVE][eft_LNG][eft_LNG] = {
Expand Down
18 changes: 0 additions & 18 deletions dpnp/backend/kernels/dpnp_krnl_manipulation.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -103,15 +103,6 @@ void (*dpnp_repeat_default_c)(const void *,
const size_t,
const size_t) = dpnp_repeat_c<_DataType>;

template <typename _DataType>
DPCTLSyclEventRef (*dpnp_repeat_ext_c)(DPCTLSyclQueueRef,
const void *,
void *,
const size_t,
const size_t,
const DPCTLEventVectorRef) =
dpnp_repeat_c<_DataType>;

template <typename _KernelNameSpecialization>
class dpnp_elemwise_transpose_c_kernel;

Expand Down Expand Up @@ -232,15 +223,6 @@ void func_map_init_manipulation(func_map_t &fmap)
fmap[DPNPFuncName::DPNP_FN_REPEAT][eft_DBL][eft_DBL] = {
eft_DBL, (void *)dpnp_repeat_default_c<double>};

fmap[DPNPFuncName::DPNP_FN_REPEAT_EXT][eft_INT][eft_INT] = {
eft_INT, (void *)dpnp_repeat_ext_c<int32_t>};
fmap[DPNPFuncName::DPNP_FN_REPEAT_EXT][eft_LNG][eft_LNG] = {
eft_LNG, (void *)dpnp_repeat_ext_c<int64_t>};
fmap[DPNPFuncName::DPNP_FN_REPEAT_EXT][eft_FLT][eft_FLT] = {
eft_FLT, (void *)dpnp_repeat_ext_c<float>};
fmap[DPNPFuncName::DPNP_FN_REPEAT_EXT][eft_DBL][eft_DBL] = {
eft_DBL, (void *)dpnp_repeat_ext_c<double>};

fmap[DPNPFuncName::DPNP_FN_TRANSPOSE][eft_INT][eft_INT] = {
eft_INT, (void *)dpnp_elemwise_transpose_default_c<int32_t>};
fmap[DPNPFuncName::DPNP_FN_TRANSPOSE][eft_LNG][eft_LNG] = {
Expand Down
1 change: 0 additions & 1 deletion dpnp/dpnp_algo/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@

set(dpnp_algo_pyx_deps
${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_linearalgebra.pxi
${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_manipulation.pxi
${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_statistics.pxi
${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_trigonometric.pxi
${CMAKE_CURRENT_SOURCE_DIR}/dpnp_algo_sorting.pxi
Expand Down
10 changes: 0 additions & 10 deletions dpnp/dpnp_algo/dpnp_algo.pxd
Original file line number Diff line number Diff line change
Expand Up @@ -92,8 +92,6 @@ cdef extern from "dpnp_iface_fptr.hpp" namespace "DPNPFuncName": # need this na
DPNP_FN_FFT_RFFT_EXT
DPNP_FN_FILL_DIAGONAL
DPNP_FN_FILL_DIAGONAL_EXT
DPNP_FN_FLATTEN
DPNP_FN_FLATTEN_EXT
DPNP_FN_FMOD
DPNP_FN_FMOD_EXT
DPNP_FN_FULL
Expand Down Expand Up @@ -130,8 +128,6 @@ cdef extern from "dpnp_iface_fptr.hpp" namespace "DPNPFuncName": # need this na
DPNP_FN_RADIANS_EXT
DPNP_FN_RECIP
DPNP_FN_RECIP_EXT
DPNP_FN_REPEAT
DPNP_FN_REPEAT_EXT
DPNP_FN_RNG_BETA
DPNP_FN_RNG_BETA_EXT
DPNP_FN_RNG_BINOMIAL
Expand Down Expand Up @@ -323,8 +319,6 @@ ctypedef c_dpctl.DPCTLSyclEventRef(*dpnp_reduction_c_t)(c_dpctl.DPCTLSyclQueueRe
const long*,
const c_dpctl.DPCTLEventVectorRef)

cpdef dpnp_descriptor dpnp_flatten(dpnp_descriptor x1)


"""
Internal functions
Expand Down Expand Up @@ -359,10 +353,6 @@ cpdef dpnp_descriptor dpnp_fmax(dpnp_descriptor x1_obj, dpnp_descriptor x2_obj,
dpnp_descriptor out=*, object where=*)
cpdef dpnp_descriptor dpnp_fmin(dpnp_descriptor x1_obj, dpnp_descriptor x2_obj, object dtype=*,
dpnp_descriptor out=*, object where=*)
"""
Array manipulation routines
"""
cpdef dpnp_descriptor dpnp_repeat(dpnp_descriptor array1, repeats, axes=*)


"""
Expand Down
49 changes: 0 additions & 49 deletions dpnp/dpnp_algo/dpnp_algo.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,6 @@ import operator
import numpy

__all__ = [
"dpnp_flatten",
"dpnp_queue_initialize",
]

Expand All @@ -63,7 +62,6 @@ include "dpnp_algo_arraycreation.pxi"
include "dpnp_algo_indexing.pxi"
include "dpnp_algo_linearalgebra.pxi"
include "dpnp_algo_logic.pxi"
include "dpnp_algo_manipulation.pxi"
include "dpnp_algo_mathematical.pxi"
include "dpnp_algo_searching.pxi"
include "dpnp_algo_sorting.pxi"
Expand All @@ -81,53 +79,6 @@ ctypedef c_dpctl.DPCTLSyclEventRef(*fptr_dpnp_flatten_t)(c_dpctl.DPCTLSyclQueueR
const c_dpctl.DPCTLEventVectorRef)


cpdef utils.dpnp_descriptor dpnp_flatten(utils.dpnp_descriptor x1):
cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(x1.dtype)

cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_FLATTEN_EXT, param1_type, param1_type)

cdef shape_type_c x1_shape = x1.shape
cdef shape_type_c x1_strides = utils.strides_to_vector(x1.strides, x1_shape)

x1_obj = x1.get_array()

# create result array with type given by FPTR data
cdef shape_type_c result_shape = (x1.size,)
cdef utils.dpnp_descriptor result = utils.create_output_descriptor(result_shape,
kernel_data.return_type,
None,
device=x1_obj.sycl_device,
usm_type=x1_obj.usm_type,
sycl_queue=x1_obj.sycl_queue)

result_sycl_queue = result.get_array().sycl_queue

cdef c_dpctl.SyclQueue q = <c_dpctl.SyclQueue> result_sycl_queue
cdef c_dpctl.DPCTLSyclQueueRef q_ref = q.get_queue_ref()

cdef shape_type_c result_strides = utils.strides_to_vector(result.strides, result_shape)

cdef fptr_dpnp_flatten_t func = <fptr_dpnp_flatten_t > kernel_data.ptr
cdef c_dpctl.DPCTLSyclEventRef event_ref = func(q_ref,
result.get_data(),
result.size,
result.ndim,
result_shape.data(),
result_strides.data(),
x1.get_data(),
x1.size,
x1.ndim,
x1_shape.data(),
x1_strides.data(),
NULL,
NULL) # dep_events_ref

with nogil: c_dpctl.DPCTLEvent_WaitAndThrow(event_ref)
c_dpctl.DPCTLEvent_Delete(event_ref)

return result


cpdef dpnp_queue_initialize():
"""
Initialize SYCL queue which will be used for any library operations.
Expand Down
80 changes: 0 additions & 80 deletions dpnp/dpnp_algo/dpnp_algo_manipulation.pxi

This file was deleted.

73 changes: 71 additions & 2 deletions dpnp/dpnp_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -1050,7 +1050,47 @@ def put(self, indices, vals, /, *, axis=None, mode="wrap"):

return dpnp.put(self, indices, vals, axis=axis, mode=mode)

# 'ravel',
def ravel(self, order="C"):
"""
Return a contiguous flattened array.

For full documentation refer to :obj:`numpy.ndarray.ravel`.
npolina4 marked this conversation as resolved.
Show resolved Hide resolved

Parameters
----------
order : {'C', 'F'}, optional
The elements of a are read using this index order. ``C`` means to index
the elements in row-major, C-style order, with the last axis index
changing fastest, back to the first axis index changing slowest. ``F``
means to index the elements in column-major, Fortran-style order, with
the first index changing fastest, and the last index changing slowest.
By default, ``C`` index order is used.

Returns
-------
y : dpnp_array
`y` is a contiguous 1-D array of the same subtype as a, with shape (a.size,)

See Also
--------
:obj:`dpnp.reshape` : Change the shape of an array without changing its data.

Examples
--------
>>> import dpnp as np
>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> x.ravel()
array([1, 2, 3, 4, 5, 6])

>>> x.reshape(-1)
array([1, 2, 3, 4, 5, 6])

>>> x.ravel(order='F')
array([1, 4, 2, 5, 3, 6])

"""

return dpnp.ravel(self, order=order)

@property
def real(self):
Expand Down Expand Up @@ -1087,7 +1127,36 @@ def real(self, value):
"""
dpnp.copyto(self._array_obj.real, value)

# 'repeat',
def repeat(self, repeats, axis=None):
"""
Repeat elements of an array.

For full documentation refer to :obj:`numpy.ndarray.repeat`.
npolina4 marked this conversation as resolved.
Show resolved Hide resolved

Parameters
----------
repeat : Union[int, Tuple[int, ...]]
The number of repetitions for each element.
`repeats` is broadcasted to fit the shape of the given axis.
axis : Optional[int]
The axis along which to repeat values. The `axis` is required
if input array has more than one dimension.

Returns
-------
out : dpnp_array
Array with repeated elements.

Examples
--------
>>> import dpnp as np
>>> x = np.array([3])
>>> x.repeat(4)
array([3, 3, 3, 3])

"""

return dpnp.repeat(self, repeats, axis=axis)

def reshape(self, *sh, **kwargs):
"""
Expand Down
Loading
Loading