Skip to content

Commit

Permalink
Improve docstring
Browse files Browse the repository at this point in the history
  • Loading branch information
Diptorup Deb committed Mar 21, 2024
1 parent 24f89e6 commit 10d3081
Showing 1 changed file with 111 additions and 12 deletions.
123 changes: 111 additions & 12 deletions numba_dpex/experimental/decorators.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,16 +43,116 @@ def _parse_func_or_sig(signature_or_function):
return pyfunc, sigs


def kernel(func_or_sig=None, **options):
"""A decorator to define a kernel function.
def kernel(function_or_signature=None, **options):
"""A decorator to compile a function written using :py:mod:`numba_dpex.kernel_api`.
The ``kernel`` decorator triggers the compilation of a function written
using the data-parallel kernel programming API exposed by
:py:mod:`numba_dpex.kernel_api`. Such a function is conceptually
equivalent to a kernel function written in the C++ SYCL eDSL. The
decorator will compile the function based on the types of the arguments
to a SPIR-V binary that can be executed either on OpenCL CPU, GPU
devices or Intel Level Zero GPU devices.
Any function to be compilable using the kernel decorator should
adhere to the following semantic rules:
- The first argument to the function should be either an instance of the
:class:`numba_dpex.kernel_api.Item` class or an instance of the
:class:`numba_dpex.kernel_api.NdItem`.
- The function should not return any value.
- The function should have at least one array type argument that can
either be an instance of ``dpnp.ndarray`` or an instance of
``dpctl.tensor.usm_ndarray``.
Args:
signature_or_function (optional): An optional signature or list of
signatures for which a function is to be compiled. Passing in a
signature "specializes" the decorated function and no other versions of
the function will be compiled. A function can also be
directly passed instead of a signature and the signature will get
inferred from the function. The actual compilation happens on every
invocation of the :func:`numba_dpex.experimental.call_kernel` function
where the decorated function is passed in as an argument along with the
argument values for the decorated function.
options (optional):
- **debug** (bool): Whether the compilation should happen in debug
mode. *(Default = False)*
- **inline_threshold** (int): Specifies the level of inlining that
the compiler should attempt. *(Default = 2)*
Returns:
An instance of
:class:`numba_dpex.kernel_api_impl.spirv.dispatcher.KernelDispatcher`.
The ``KernelDispatcher`` object compiles the decorated function when
passed in to :func:`numba_dpex.experimental.call_kernel`.
Examples:
1. Decorate a function and pass it to ``call_kernel`` for compilation and
execution.
.. code-block:: python
import dpnp
import numba_dpex as dpex
from numba_dpex import kernel_api as kapi
# Data parallel kernel implementing vector sum
@dpex.kernel
def vecadd(item: kapi.Item, a, b, c):
i = item.get_id(0)
c[i] = a[i] + b[i]
N = 1024
a = dpnp.ones(N)
b = dpnp.ones_like(a)
c = dpnp.zeros_like(a)
dpex.call_kernel(vecadd, kapi.Range(N), a, b, c)
2. Specializes a kernel and then compiles it directly before executing it
via ``call_kernel``. The kernel is specialized to expect a 1-D
``dpnp.ndarray`` with either ``float32`` type elements or ``int64`` type
elements.
.. code-block:: python
import dpnp
import numba_dpex as dpex
from numba_dpex import kernel_api as kapi
from numba_dpex import DpnpNdArray, float32, int64
from numba_dpex.core.types.kernel_api.index_space_ids import ItemType
i64arrty = DpnpNdArray(ndim=1, dtype=int64, layout="C")
f32arrty = DpnpNdArray(ndim=1, dtype=float32, layout="C")
item_ty = ItemType(ndim=1)
specialized_kernel = dpex.kernel(
[
(item_ty, i64arrty, i64arrty, i64arrty),
(item_ty, f32arrty, f32arrty, f32arrty),
]
)
def vecadd(item: kapi.Item, a, b, c):
i = item.get_id(0)
c[i] = a[i] + b[i]
A kernel function is conceptually equivalent to a SYCL kernel function, and
gets compiled into either an OpenCL or a LevelZero SPIR-V binary kernel.
A kernel decorated Python function has the following restrictions:
# Compile all specializations for vecadd
precompiled_kernels = specialized_kernel(vecadd)
N = 1024
a = dpnp.ones(N, dtype=dpnp.int64)
b = dpnp.ones_like(a)
c = dpnp.zeros_like(a)
# Call a specific pre-compiled version of vecadd
dpex.call_kernel(precompiled_kernels, kapi.Range(N), a, b, c)
* The function can not return any value.
* All array arguments passed to a kernel should adhere to compute
follows data programming model.
"""

# dispatcher is a type:
Expand All @@ -67,10 +167,10 @@ def kernel(func_or_sig=None, **options):
)
options["_compilation_mode"] = CompilationMode.KERNEL

# FIXME: The options need to be evaluated and checked here like it is
# TODO: The options need to be evaluated and checked here like it is
# done in numba.core.decorators.jit

func, sigs = _parse_func_or_sig(func_or_sig)
func, sigs = _parse_func_or_sig(function_or_signature)
for sig in sigs:
if isinstance(sig, str):
raise NotImplementedError(
Expand Down Expand Up @@ -105,8 +205,7 @@ def _kernel_dispatcher(pyfunc):


def device_func(func_or_sig=None, **options):
"""Generates a function with a device-only calling convention, e.g.,
spir_func for SPIR-V based devices.
"""Compiles a function into a "device-only" function.
The decorator is used to compile overloads in the DpexKernelTarget and
users should use the decorator to define functions that are only callable
Expand Down

0 comments on commit 10d3081

Please sign in to comment.