Skip to content

Commit

Permalink
Merge pull request #1150 from IntelPython/main
Browse files Browse the repository at this point in the history
Merge main into GOLD
  • Loading branch information
ZzEeKkAa authored Sep 28, 2023
2 parents 4990ffa + 8d0457b commit 5aaf492
Show file tree
Hide file tree
Showing 28 changed files with 335 additions and 162 deletions.
8 changes: 6 additions & 2 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,21 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [0.21.3] - 2023-09-21
## [0.21.3] - 2023-09-28

### Fixed
* Pin CI conda channels (#1133)
* Mangled kernel name generation (#1112)

### Added
* Support tests on single point precision GPUs (#1143)
* Initial work on Coverity scan CI (#1128)
* Python 3.11 support (#1123)
* Security policy (#1117)
* scikit-build to build native extensions (#1107, #1127)
* scikit-build to build native extensions (#1107, #1116, #1127, #1139, #1140)

### Changed
* Rename helper function to clearly indicate its usage (#1145)
* The data model used by the DpnpNdArray type for kernel functions(#1118)

### Removed
Expand Down
7 changes: 3 additions & 4 deletions numba_dpex/core/typing/typeof.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
from dpctl import SyclQueue
from dpctl.tensor import usm_ndarray
from dpnp import ndarray
from numba.core import types
from numba.extending import typeof_impl
from numba.np import numpy_support

Expand All @@ -16,7 +15,7 @@
from ..types.usm_ndarray_type import USMNdArray


def _typeof_helper(val, array_class_type):
def _array_typeof_helper(val, array_class_type):
"""Creates a Numba type of the specified ``array_class_type`` for ``val``."""
try:
dtype = numpy_support.from_dtype(val.dtype)
Expand Down Expand Up @@ -74,7 +73,7 @@ def typeof_usm_ndarray(val, c):
Returns: The Numba type corresponding to dpctl.tensor.usm_ndarray
"""
return _typeof_helper(val, USMNdArray)
return _array_typeof_helper(val, USMNdArray)


@typeof_impl.register(ndarray)
Expand All @@ -92,7 +91,7 @@ def typeof_dpnp_ndarray(val, c):
Returns: The Numba type corresponding to dpnp.ndarray
"""
return _typeof_helper(val, DpnpNdArray)
return _array_typeof_helper(val, DpnpNdArray)


@typeof_impl.register(SyclQueue)
Expand Down
114 changes: 114 additions & 0 deletions numba_dpex/tests/_helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
import shutil

import dpctl
import dpnp
import pytest

from numba_dpex import config, numba_sem_version
Expand Down Expand Up @@ -138,3 +139,116 @@ def override_config(name, value, config=config):

def _id(obj):
return obj


def get_complex_dtypes(device=None):
"""
Build a list of complex types supported by DPNP based on device capabilities.
"""

dev = dpctl.select_default_device() if device is None else device

# add complex types
dtypes = [dpnp.complex64]
if dev.has_aspect_fp64:
dtypes.append(dpnp.complex128)
return dtypes


def get_float_dtypes(no_float16=True, device=None):
"""
Build a list of floating types supported by DPNP based on device capabilities.
"""

dev = dpctl.select_default_device() if device is None else device

# add floating types
dtypes = []
if not no_float16 and dev.has_aspect_fp16:
dtypes.append(dpnp.float16)

dtypes.append(dpnp.float32)
if dev.has_aspect_fp64:
dtypes.append(dpnp.float64)
return dtypes


def get_float_complex_dtypes(no_float16=True, device=None):
"""
Build a list of floating and complex types supported by DPNP based on device capabilities.
"""

dtypes = get_float_dtypes(no_float16, device)
dtypes.extend(get_complex_dtypes(device))
return dtypes


def get_all_dtypes(
no_bool=False,
no_int=False,
no_float16=True,
no_float=False,
no_complex=False,
no_none=False,
device=None,
):
"""
Build a list of types supported by DPNP based on input flags and device capabilities.
"""

dev = dpctl.select_default_device() if device is None else device

# add boolean type
dtypes = [dpnp.bool] if not no_bool else []

# add integer types
if not no_int:
dtypes.extend([dpnp.int32, dpnp.int64])

# add floating types
if not no_float:
dtypes.extend(get_float_dtypes(no_float16=no_float16, device=dev))

# add complex types
if not no_complex:
dtypes.extend(get_complex_dtypes(device=dev))

# add None value to validate a default dtype
if not no_none:
dtypes.append(None)
return dtypes


def get_queue_or_skip(args=tuple()):
try:
q = dpctl.SyclQueue(*args)
except dpctl.SyclQueueCreationError:
pytest.skip(f"Queue could not be created from {args}")
return q


def skip_if_dtype_not_supported(dt, q_or_dev):
import dpctl.tensor as dpt

dt = dpt.dtype(dt)
if type(q_or_dev) is dpctl.SyclQueue:
dev = q_or_dev.sycl_device
elif type(q_or_dev) is dpctl.SyclDevice:
dev = q_or_dev
else:
raise TypeError(
"Expected dpctl.SyclQueue or dpctl.SyclDevice, "
f"got {type(q_or_dev)}"
)
dev_has_dp = dev.has_aspect_fp64
if dev_has_dp is False and dt in [dpt.float64, dpt.complex128]:
pytest.skip(
f"{dev.name} does not support double precision floating point types"
)
dev_has_hp = dev.has_aspect_fp16
if dev_has_hp is False and dt in [
dpt.float16,
]:
pytest.skip(
f"{dev.name} does not support half precision floating point type"
)
14 changes: 11 additions & 3 deletions numba_dpex/tests/core/passes/test_parfor_legalize_cfd_pass.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,13 @@

from numba_dpex import dpjit
from numba_dpex.core.exceptions import ExecutionQueueInferenceError
from numba_dpex.tests._helper import skip_no_opencl_cpu, skip_no_opencl_gpu
from numba_dpex.tests._helper import (
get_all_dtypes,
skip_no_opencl_cpu,
skip_no_opencl_gpu,
)

shapes = [10, (2, 5)]
dtypes = [dpnp.int32, dpnp.int64, dpnp.float32, dpnp.float64]
usm_types = ["device"]
devices = ["gpu"]

Expand All @@ -30,7 +33,12 @@ def func1(a, b):

@skip_no_opencl_gpu
@pytest.mark.parametrize("shape", shapes)
@pytest.mark.parametrize("dtype", dtypes)
@pytest.mark.parametrize(
"dtype",
get_all_dtypes(
no_bool=True, no_float16=True, no_none=True, no_complex=True
),
)
@pytest.mark.parametrize("usm_type", usm_types)
@pytest.mark.parametrize("device", devices)
def test_parfor_legalize_cfd_pass(shape, dtype, usm_type, device):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def test_boxing_unboxing():
def func(a):
return a

a = dpnp.empty(10)
a = dpnp.empty(10, dtype=dpnp.float32)
try:
b = func(a)
except:
Expand All @@ -40,8 +40,8 @@ def test_stride_calc_at_unboxing():
def _tester(a):
return a.strides

b = dpnp.empty((4, 16, 4))
b = dpnp.empty((4, 16, 4), dtype=dpnp.float32)
strides = dpjit(_tester)(b)

# Numba computes strides as bytes
assert list(strides) == [512, 32, 8]
assert list(strides) == [256, 16, 4]
Original file line number Diff line number Diff line change
@@ -1,23 +1,23 @@
import dpctl
import pytest

from numba_dpex.core.types import USMNdArray, dpctl_types
from numba_dpex.core.types import USMNdArray, dpctl_types, float32


def test_usmndarray_negative_tests():
default_device = dpctl.SyclDevice().filter_string

usmarr1 = USMNdArray(1, device=None, queue=None)
assert usmarr1.dtype.name == "float64"
usmarr1 = USMNdArray(1, device=None, queue=None, dtype=float32)
assert usmarr1.dtype.name == "float32"
assert usmarr1.ndim == 1
assert usmarr1.layout == "C"
assert usmarr1.addrspace == 1
assert usmarr1.usm_type == "device"

assert usmarr1.queue.sycl_device == default_device

usmarr2 = USMNdArray(1, device=default_device, queue=None)
assert usmarr2.dtype.name == "float64"
usmarr2 = USMNdArray(1, device=default_device, queue=None, dtype=float32)
assert usmarr2.dtype.name == "float32"
assert usmarr2.ndim == 1
assert usmarr2.layout == "C"
assert usmarr2.addrspace == 1
Expand All @@ -26,18 +26,18 @@ def test_usmndarray_negative_tests():

queue = dpctl_types.DpctlSyclQueue(dpctl.SyclQueue())

usmarr3 = USMNdArray(1, device=None, queue=queue)
assert usmarr3.dtype.name == "float64"
usmarr3 = USMNdArray(1, device=None, queue=queue, dtype=float32)
assert usmarr3.dtype.name == "float32"
assert usmarr3.ndim == 1
assert usmarr3.layout == "C"
assert usmarr3.addrspace == 1
assert usmarr3.usm_type == "device"

with pytest.raises(TypeError):
USMNdArray(1, device=default_device, queue=queue)
USMNdArray(1, device=default_device, queue=queue, dtype=float32)

with pytest.raises(TypeError):
USMNdArray(1, queue=0)
USMNdArray(1, queue=0, dtype=float32)

with pytest.raises(TypeError):
USMNdArray(1, device=0)
USMNdArray(1, device=0, dtype=float32)
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,17 @@
#
# SPDX-License-Identifier: Apache-2.0

import dpctl
import dpctl.tensor as dpt
import numpy as np
import pytest
from numba.misc.special import typeof

from numba_dpex.core.types import USMNdArray
from numba_dpex.tests._helper import (
get_queue_or_skip,
skip_if_dtype_not_supported,
)

list_of_dtypes = [
np.int32,
Expand Down Expand Up @@ -35,6 +40,9 @@ def usm_type(request):


def test_usm_ndarray_type(dtype, usm_type):
q = get_queue_or_skip()
skip_if_dtype_not_supported(dtype, q)

a = np.array(np.random.random(10), dtype)
da = dpt.usm_ndarray(a.shape, dtype=a.dtype, buffer=usm_type)

Expand Down
20 changes: 16 additions & 4 deletions numba_dpex/tests/dpjit_tests/dpnp/test_dpnp_empty.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,9 @@
from numba import errors

from numba_dpex import dpjit
from numba_dpex.tests._helper import get_all_dtypes

shapes = [11, (2, 5)]
dtypes = [dpnp.int32, dpnp.int64, dpnp.float32, dpnp.float64]
usm_types = ["device", "shared", "host"]


Expand Down Expand Up @@ -51,7 +51,12 @@ def func(shape):


@pytest.mark.parametrize("shape", shapes)
@pytest.mark.parametrize("dtype", dtypes)
@pytest.mark.parametrize(
"dtype",
get_all_dtypes(
no_bool=True, no_float16=True, no_none=True, no_complex=True
),
)
@pytest.mark.parametrize("usm_type", usm_types)
def test_dpnp_empty_from_device(shape, dtype, usm_type):
""" "Use device only in dpnp.emtpy() inside dpjit."""
Expand Down Expand Up @@ -84,7 +89,12 @@ def func(shape):


@pytest.mark.parametrize("shape", shapes)
@pytest.mark.parametrize("dtype", dtypes)
@pytest.mark.parametrize(
"dtype",
get_all_dtypes(
no_bool=True, no_float16=True, no_none=True, no_complex=True
),
)
@pytest.mark.parametrize("usm_type", usm_types)
def test_dpnp_empty_from_queue(shape, dtype, usm_type):
""" "Use queue only in dpnp.emtpy() inside dpjit."""
Expand Down Expand Up @@ -121,7 +131,9 @@ def test_dpnp_empty_exceptions():

@dpjit
def func(shape, queue):
c = dpnp.empty(shape, sycl_queue=queue, device=device)
c = dpnp.empty(
shape, sycl_queue=queue, device=device, dtype=dpnp.float32
)
return c

with pytest.raises(errors.TypingError):
Expand Down
Loading

0 comments on commit 5aaf492

Please sign in to comment.