Skip to content

Commit

Permalink
Add PrivateArray kernel_api
Browse files Browse the repository at this point in the history
  • Loading branch information
ZzEeKkAa committed Mar 1, 2024
1 parent 4b1c8a9 commit ade28e8
Show file tree
Hide file tree
Showing 6 changed files with 312 additions and 0 deletions.
1 change: 1 addition & 0 deletions numba_dpex/experimental/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
_atomic_ref_overloads,
_group_barrier_overloads,
_index_space_id_overloads,
_private_array_overloads,
)
from .decorators import device_func, kernel
from .launcher import call_kernel, call_kernel_async
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# SPDX-FileCopyrightText: 2023 - 2024 Intel Corporation
#
# SPDX-License-Identifier: Apache-2.0

"""
Implements the SPIR-V overloads for the kernel_api.AtomicRef class methods.
"""


import llvmlite.ir as llvmir
from llvmlite.ir.builder import IRBuilder
from numba.core import errors, types
from numba.core.typing.templates import Signature
from numba.extending import intrinsic, overload

from numba_dpex.core.types import USMNdArray
from numba_dpex.experimental.target import DpexExpKernelTypingContext
from numba_dpex.kernel_api import PrivateArray
from numba_dpex.kernel_api_impl.spirv.arrayobj import (
make_spirv_generic_array_on_stack,
require_literal,
)
from numba_dpex.utils import address_space as AddressSpace

from ..target import DPEX_KERNEL_EXP_TARGET_NAME


@intrinsic(target=DPEX_KERNEL_EXP_TARGET_NAME)
def _intrinsic_private_array_ctor(
ty_context, ty_shape, ty_dtype # pylint: disable=unused-argument
):
require_literal(ty_shape)

if not isinstance(ty_dtype, types.DType):
raise errors.TypingError("Second argument must be instance of DType")

ndim = 1
if hasattr(ty_shape, "__len__"):
ndim = len(ty_shape)

ty_array = USMNdArray(
dtype=ty_dtype.dtype,
ndim=ndim,
layout="C",
addrspace=AddressSpace.PRIVATE,
)

sig = ty_array(ty_shape, ty_dtype)

def codegen(
context: DpexExpKernelTypingContext,
builder: IRBuilder,
sig: Signature,
args: list[llvmir.Value],
):
shape = args[0]
ty_shape = sig.args[0]
ty_array = sig.return_type

ary = make_spirv_generic_array_on_stack(
context, builder, ty_array, ty_shape, shape
)
return ary._getvalue() # pylint: disable=protected-access

return (
sig,
codegen,
)


@overload(
PrivateArray,
prefer_literal=True,
target=DPEX_KERNEL_EXP_TARGET_NAME,
)
def ol_private_array_ctor(
shape,
dtype,
):
"""Overload of the constructor for the class
class:`numba_dpex.kernel_api.AtomicRef`.
Raises:
errors.TypingError: If the `ref` argument is not a UsmNdArray type.
errors.TypingError: If the dtype of the `ref` is not supported in an
AtomicRef.
errors.TypingError: If the device does not support atomic operations on
the dtype of the `ref`.
errors.TypingError: If the `memory_order`, `address_type`, or
`memory_scope` arguments could not be parsed as integer literals.
errors.TypingError: If the `address_space` argument is different from
the address space attribute of the `ref` argument.
errors.TypingError: If the address space is PRIVATE.
"""

def ol_private_array_ctor_impl(
shape,
dtype,
):
# pylint: disable=no-value-for-parameter
return _intrinsic_private_array_ctor(shape, dtype)

return ol_private_array_ctor_impl
2 changes: 2 additions & 0 deletions numba_dpex/kernel_api/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from .index_space_ids import Group, Item, NdItem
from .launcher import call_kernel
from .memory_enums import AddressSpace, MemoryOrder, MemoryScope
from .private_array import PrivateArray
from .ranges import NdRange, Range

__all__ = [
Expand All @@ -28,6 +29,7 @@
"Group",
"NdItem",
"Item",
"PrivateArray",
"group_barrier",
"call_kernel",
]
40 changes: 40 additions & 0 deletions numba_dpex/kernel_api/private_array.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# SPDX-FileCopyrightText: 2023 Intel Corporation
#
# SPDX-License-Identifier: Apache-2.0

"""Implements a Python analogue to SYCL's local_accessor class. The class is
intended to be used in pure Python code when prototyping a kernel function
and to be passed to an actual kernel function for local memory allocation.
"""

from dpctl.tensor import usm_ndarray

KernelUseOnlyError = NotImplementedError("Only for use inside kernel")


class PrivateArray(usm_ndarray):
"""
The ``LocalAccessor`` class is analogous to SYCL's ``local_accessor``
class. The class acts a s proxy to allocating device local memory and
accessing that memory from within a :func:`numba_dpex.kernel` decorated
function.
"""

def __init__(self, shape, dtype) -> None:
"""Creates a new LocalAccessor instance of the given shape and dtype."""

raise KernelUseOnlyError

def __getitem__(self, idx_obj):
"""Returns the value stored at the position represented by idx_obj in
the self._data ndarray.
"""

raise KernelUseOnlyError

def __setitem__(self, idx_obj, val):
"""Assigns a new value to the position represented by idx_obj in
the self._data ndarray.
"""

raise KernelUseOnlyError
117 changes: 117 additions & 0 deletions numba_dpex/kernel_api_impl/spirv/arrayobj.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
"""Contains spriv specific array functions."""

import operator
from functools import reduce
from typing import Union

import llvmlite.ir as llvmir
from llvmlite.ir.builder import IRBuilder
from numba.core import cgutils, errors, types
from numba.core.base import BaseContext

from numba_dpex.kernel_api_impl.spirv.target import SPIRVTargetContext
from numba_dpex.ocl.oclimpl import _get_target_data


def get_itemsize(context: SPIRVTargetContext, array_type: types.Array):
"""
Return the item size for the given array or buffer type.
Same as numba.np.arrayobj.get_itemsize, but using spirv data.
"""
targetdata = _get_target_data(context)
lldtype = context.get_data_type(array_type.dtype)
return lldtype.get_abi_size(targetdata)


def require_literal(literal_type: types.Type):
"""Checks if the numba type is Literal. If iterable object is passed,
checks that every element is Literal.
Raises:
TypingError: When argument is not Iterable.
"""
if not hasattr(literal_type, "__len__"):
if not isinstance(literal_type, types.Literal):
raise errors.TypingError("requires literal type")
return

for i, _ in enumerate(literal_type):
if not isinstance(literal_type[i], types.Literal):
raise errors.TypingError("requires literal type")


def make_spirv_array( # pylint: disable=too-many-arguments
context: SPIRVTargetContext,
builder: IRBuilder,
ty_array: types.Array,
ty_shape: Union[types.IntegerLiteral, types.BaseTuple],
shape: llvmir.Value,
data: llvmir.Value,
):
"""Makes SPIR-V array and fills it data."""
# Create array object
ary = context.make_array(ty_array)(context, builder)

itemsize = get_itemsize(context, ty_array)
ll_itemsize = cgutils.intp_t(itemsize)

if isinstance(ty_shape, types.BaseTuple):
shapes = cgutils.unpack_tuple(builder, shape)
else:
ty_shape = (ty_shape,)
shapes = (shape,)
shapes = [
context.cast(builder, value, fromty, types.intp)
for fromty, value in zip(ty_shape, shapes)
]

off = ll_itemsize
strides = []
if ty_array.layout == "F":
for s in shapes:
strides.append(off)
off = builder.mul(off, s)
else:
for s in reversed(shapes):
strides.append(off)
off = builder.mul(off, s)
strides.reverse()

context.populate_array(
ary,
data=data,
shape=shapes,
strides=strides,
itemsize=ll_itemsize,
)

return ary


def allocate_array_data_on_stack(
context: BaseContext,
builder: IRBuilder,
ty_array: types.Array,
ty_shape: Union[types.IntegerLiteral, types.BaseTuple],
):
"""Allocates flat array of given shape on the stack."""
if not isinstance(ty_shape, types.BaseTuple):
ty_shape = (ty_shape,)

return cgutils.alloca_once(
builder,
context.get_data_type(ty_array.dtype),
size=reduce(operator.mul, [s.literal_value for s in ty_shape]),
)


def make_spirv_generic_array_on_stack(
context: SPIRVTargetContext,
builder: IRBuilder,
ty_array: types.Array,
ty_shape: Union[types.IntegerLiteral, types.BaseTuple],
shape: llvmir.Value,
):
"""Makes SPIR-V array of given shape with empty data."""
data = allocate_array_data_on_stack(context, builder, ty_array, ty_shape)
return make_spirv_array(context, builder, ty_array, ty_shape, shape, data)
48 changes: 48 additions & 0 deletions numba_dpex/tests/experimental/test_private_array.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import dpnp
import numpy as np
import pytest

import numba_dpex.experimental as dpex_exp
from numba_dpex.kernel_api import Item, PrivateArray, Range


@dpex_exp.kernel
def private_array_kernel(item: Item, a):
i = item.get_linear_id()
p = PrivateArray(10, a.dtype)

for j in range(10):
p[j] = j * j

a[i] = 0
for j in range(10):
a[i] += p[j]


@dpex_exp.kernel
def private_2d_array_kernel(item: Item, a):
i = item.get_linear_id()
p = PrivateArray(shape=(5, 2), dtype=a.dtype)

for j in range(10):
p[j % 5, j // 5] = j * j

a[i] = 0
for j in range(10):
a[i] += p[j % 5, j // 5]


@pytest.mark.parametrize(
"kernel", [private_array_kernel, private_2d_array_kernel]
)
def test_private_array(kernel):
a = dpnp.empty(10, dtype=dpnp.float32)
dpex_exp.call_kernel(kernel, Range(a.size), a)

want = np.full(a.size, (9) * (9 + 1) * (2 * 9 + 1) / 6, dtype=np.float32)

assert np.array_equal(want, a.asnumpy())


if __name__ == "__main__":
test_private_array(private_array_kernel)

0 comments on commit ade28e8

Please sign in to comment.