Skip to content

Commit

Permalink
Implement and test broadcast!(f, C) for sparse vector/matrix C.
Browse files Browse the repository at this point in the history
  • Loading branch information
Sacha0 committed Jan 8, 2017
1 parent 69c1c8f commit 4b23f42
Show file tree
Hide file tree
Showing 2 changed files with 23 additions and 0 deletions.
13 changes: 13 additions & 0 deletions base/sparse/higherorderfns.jl
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,19 @@ function _noshapecheck_map{Tf,N}(f::Tf, A::SparseVecOrMat, Bs::Vararg{SparseVecO
end
# (3) broadcast[!] entry points
broadcast{Tf}(f::Tf, A::SparseVecOrMat) = _noshapecheck_map(f, A)
function broadcast!{Tf}(f::Tf, C::SparseVecOrMat)
isempty(C) && return _finishempty!(C)
fofnoargs = f()
if _iszero(fofnoargs) # f() is zero, so empty C
trimstorage!(C, 0)
_finishempty!(C)
else # f() is nonzero, so densify C and fill with independent calls to f()
_densestructure!(C)
storedvals(C)[1] = fofnoargs
broadcast!(f, view(storedvals(C), 2:length(storedvals(C))))
end
return C
end
broadcast!{Tf}(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat) = map!(f, C, A)
function broadcast!{Tf,N}(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat, Bs::Vararg{SparseVecOrMat,N})
_aresameshape(C, A, Bs...) && return _noshapecheck_map!(f, C, A, Bs...)
Expand Down
10 changes: 10 additions & 0 deletions test/sparse/higherorderfns.jl
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,16 @@ end
end
end

@testset "broadcast! implementation specialized for solely an output sparse vector/matrix (no inputs)" begin
N, M, p = 10, 12, 0.4
V, C = sprand(N, p), sprand(N, M, p)
fV, fC = Array(V), Array(C)
@test broadcast!(() -> 0, V) == sparse(broadcast!(() -> 0, fV))
@test broadcast!(() -> 0, C) == sparse(broadcast!(() -> 0, fC))
@test let z = 0, fz = 0; broadcast!(() -> z += 1, V) == broadcast!(() -> fz += 1, fV); end
@test let z = 0, fz = 0; broadcast!(() -> z += 1, C) == broadcast!(() -> fz += 1, fC); end
end

@testset "broadcast[!] implementation specialized for a single (input) sparse vector/matrix" begin
# broadcast[!] for a single sparse vector/matrix falls back to map[!], tested extensively
# above. here we simply lightly exercise the relevant broadcast[!] entry points.
Expand Down

0 comments on commit 4b23f42

Please sign in to comment.