Skip to content

Commit

Permalink
Make cov's corrected argument a keyword argument and cleanup docstr…
Browse files Browse the repository at this point in the history
…ings for `cov` and `cor` (#21709)

* Make cov()'s corrected argument a keyword argument and cleanup docstrings

For consistency with var and std. Also remove methods which are no longer needed
now that deprecations have been removed. Add types to signatures in docstrings.

* Cleanup unneeded cor() methods and docstrings

Remove methods which are no longer needed now that deprecations have
been removed. Add types to signatures in docstrings.
  • Loading branch information
nalimilan authored and andreasnoack committed Jun 27, 2017
1 parent 4dae4db commit ac65741
Show file tree
Hide file tree
Showing 4 changed files with 56 additions and 66 deletions.
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,9 @@ Deprecated or removed
implementations is now in AbstractFFTs.jl, the bindings to the FFTW library are in FFTW.jl,
and the Base signal processing functions which used FFTs are now in DSP.jl ([#21956]).

* The `corrected` positional argument to `cov` has been deprecated in favor of
a keyword argument with the same name (#21709).


Julia v0.6.0 Release Notes
==========================
Expand Down
6 changes: 6 additions & 0 deletions base/deprecated.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1485,6 +1485,12 @@ end
using .DSP
export conv, conv2, deconv, filt, filt!, xcorr

# PR #21709
@deprecate cov(x::AbstractVector, corrected::Bool) cov(x, corrected=corrected)
@deprecate cov(x::AbstractMatrix, vardim::Int, corrected::Bool) cov(x, corrected=corrected)
@deprecate cov(X::AbstractVector, Y::AbstractVector, corrected::Bool) cov(X, Y, corrected=corrected)
@deprecate cov(X::AbstractVecOrMat, Y::AbstractVecOrMat, vardim::Int, corrected::Bool) cov(X, Y, vardim, corrected=corrected)

# END 0.7 deprecations

# BEGIN 1.0 deprecations
Expand Down
77 changes: 29 additions & 48 deletions base/statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -317,75 +317,64 @@ unscaled_covzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int) =

# covzm (with centered data)

covzm(x::AbstractVector, corrected::Bool=true) = unscaled_covzm(x) / (_length(x) - Int(corrected))
covzm(x::AbstractMatrix, vardim::Int=1, corrected::Bool=true) =
covzm(x::AbstractVector; corrected::Bool=true) = unscaled_covzm(x) / (_length(x) - Int(corrected))
covzm(x::AbstractMatrix, vardim::Int=1; corrected::Bool=true) =
scale!(unscaled_covzm(x, vardim), inv(size(x,vardim) - Int(corrected)))
covzm(x::AbstractVector, y::AbstractVector, corrected::Bool=true) =
covzm(x::AbstractVector, y::AbstractVector; corrected::Bool=true) =
unscaled_covzm(x, y) / (_length(x) - Int(corrected))
covzm(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int=1, corrected::Bool=true) =
covzm(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int=1; corrected::Bool=true) =
scale!(unscaled_covzm(x, y, vardim), inv(_getnobs(x, y, vardim) - Int(corrected)))

# covm (with provided mean)

covm(x::AbstractVector, xmean, corrected::Bool=true) =
covzm(x .- xmean, corrected)
covm(x::AbstractMatrix, xmean, vardim::Int=1, corrected::Bool=true) =
covzm(x .- xmean, vardim, corrected)
covm(x::AbstractVector, xmean, y::AbstractVector, ymean, corrected::Bool=true) =
covzm(x .- xmean, y .- ymean, corrected)
covm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1, corrected::Bool=true) =
covzm(x .- xmean, y .- ymean, vardim, corrected)
covm(x::AbstractVector, xmean; corrected::Bool=true) =
covzm(x .- xmean; corrected=corrected)
covm(x::AbstractMatrix, xmean, vardim::Int=1; corrected::Bool=true) =
covzm(x .- xmean, vardim; corrected=corrected)
covm(x::AbstractVector, xmean, y::AbstractVector, ymean; corrected::Bool=true) =
covzm(x .- xmean, y .- ymean; corrected=corrected)
covm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1; corrected::Bool=true) =
covzm(x .- xmean, y .- ymean, vardim; corrected=corrected)

# cov (API)
"""
cov(x[, corrected=true])
cov(x::AbstractVector; corrected::Bool=true)
Compute the variance of the vector `x`. If `corrected` is `true` (the default) then the sum
is scaled with `n-1`, whereas the sum is scaled with `n` if `corrected` is `false` where `n = length(x)`.
"""
cov(x::AbstractVector, corrected::Bool) = covm(x, Base.mean(x), corrected)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged
cov(x::AbstractVector) = covm(x, Base.mean(x), true)
cov(x::AbstractVector; corrected::Bool=true) = covm(x, Base.mean(x); corrected=corrected)

"""
cov(X[, vardim=1, corrected=true])
cov(X::AbstractMatrix[, vardim::Int=1]; corrected::Bool=true)
Compute the covariance matrix of the matrix `X` along the dimension `vardim`. If `corrected`
is `true` (the default) then the sum is scaled with `n-1`, whereas the sum is scaled with `n`
if `corrected` is `false` where `n = size(X, vardim)`.
"""
cov(X::AbstractMatrix, vardim::Int, corrected::Bool=true) =
covm(X, _vmean(X, vardim), vardim, corrected)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged
cov(X::AbstractMatrix) = cov(X, 1, true)
cov(X::AbstractMatrix, vardim::Int=1; corrected::Bool=true) =
covm(X, _vmean(X, vardim), vardim; corrected=corrected)

"""
cov(x, y[, corrected=true])
cov(x::AbstractVector, y::AbstractVector; corrected::Bool=true)
Compute the covariance between the vectors `x` and `y`. If `corrected` is `true` (the
default), computes ``\\frac{1}{n-1}\\sum_{i=1}^n (x_i-\\bar x) (y_i-\\bar y)^*`` where
``*`` denotes the complex conjugate and `n = length(x) = length(y)`. If `corrected` is
`false`, computes ``\frac{1}{n}\sum_{i=1}^n (x_i-\\bar x) (y_i-\\bar y)^*``.
"""
cov(x::AbstractVector, y::AbstractVector, corrected::Bool) =
covm(x, Base.mean(x), y, Base.mean(y), corrected)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged
cov(x::AbstractVector, y::AbstractVector) =
covm(x, Base.mean(x), y, Base.mean(y), true)
cov(x::AbstractVector, y::AbstractVector; corrected::Bool=true) =
covm(x, Base.mean(x), y, Base.mean(y); corrected=corrected)

"""
cov(X, Y[, vardim=1, corrected=true])
cov(X::AbstractVecOrMat, Y::AbstractVecOrMat[, vardim::Int=1]; corrected::Bool=true)
Compute the covariance between the vectors or matrices `X` and `Y` along the dimension
`vardim`. If `corrected` is `true` (the default) then the sum is scaled with `n-1`, whereas
the sum is scaled with `n` if `corrected` is `false` where `n = size(X, vardim) = size(Y, vardim)`.
"""
cov(X::AbstractVecOrMat, Y::AbstractVecOrMat, vardim::Int, corrected::Bool=true) =
covm(X, _vmean(X, vardim), Y, _vmean(Y, vardim), vardim, corrected)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these methods can be merged
cov(x::AbstractVector, Y::AbstractMatrix) = cov(x, Y, 1, true)
cov(X::AbstractMatrix, y::AbstractVector) = cov(X, y, 1, true)
cov(X::AbstractMatrix, Y::AbstractMatrix) = cov(X, Y, 1, true)
cov(X::AbstractVecOrMat, Y::AbstractVecOrMat, vardim::Int=1; corrected::Bool=true) =
covm(X, _vmean(X, vardim), Y, _vmean(Y, vardim), vardim; corrected=corrected)

##### correlation #####

Expand Down Expand Up @@ -490,41 +479,33 @@ corm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1) =

# cor
"""
cor(x)
cor(x::AbstractVector)
Return the number one.
"""
cor(x::AbstractVector) = one(real(eltype(x)))
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged

"""
cor(X[, vardim=1])
cor(X::AbstractMatrix[, vardim::Int=1])
Compute the Pearson correlation matrix of the matrix `X` along the dimension `vardim`.
"""
cor(X::AbstractMatrix, vardim::Int) = corm(X, _vmean(X, vardim), vardim)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged
cor(X::AbstractMatrix) = cor(X, 1)
cor(X::AbstractMatrix, vardim::Int=1) = corm(X, _vmean(X, vardim), vardim)

"""
cor(x, y)
cor(x::AbstractVector, y::AbstractVector)
Compute the Pearson correlation between the vectors `x` and `y`.
"""
cor(x::AbstractVector, y::AbstractVector) = corm(x, Base.mean(x), y, Base.mean(y))
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged

"""
cor(X, Y[, vardim=1])
cor(X::AbstractVecOrMat, Y::AbstractVecOrMat[, vardim=1])
Compute the Pearson correlation between the vectors or matrices `X` and `Y` along the dimension `vardim`.
"""
cor(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int) =
cor(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int=1) =
corm(x, _vmean(x, vardim), y, _vmean(y, vardim), vardim)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these methods can be merged
cor(x::AbstractVector, Y::AbstractMatrix) = cor(x, Y, 1)
cor(X::AbstractMatrix, y::AbstractVector) = cor(X, y, 1)
cor(X::AbstractMatrix, Y::AbstractMatrix) = cor(X, Y, 1)

##### median & quantiles #####

Expand Down
36 changes: 18 additions & 18 deletions test/statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -186,50 +186,50 @@ for vd in [1, 2], zm in [true, false], cr in [true, false]
y1 = vec(Y[1,:])
end

c = zm ? Base.covm(x1, 0, cr) :
cov(x1, cr)
c = zm ? Base.covm(x1, 0, corrected=cr) :
cov(x1, corrected=cr)
@test isa(c, Float64)
@test c Cxx[1,1]
@inferred cov(x1, cr)
@inferred cov(x1, corrected=cr)

@test cov(X) == Base.covm(X, mean(X, 1))
C = zm ? Base.covm(X, 0, vd, cr) :
cov(X, vd, cr)
C = zm ? Base.covm(X, 0, vd, corrected=cr) :
cov(X, vd, corrected=cr)
@test size(C) == (k, k)
@test C Cxx
@inferred cov(X, vd, cr)
@inferred cov(X, vd, corrected=cr)

@test cov(x1, y1) == Base.covm(x1, mean(x1), y1, mean(y1))
c = zm ? Base.covm(x1, 0, y1, 0, cr) :
cov(x1, y1, cr)
c = zm ? Base.covm(x1, 0, y1, 0, corrected=cr) :
cov(x1, y1, corrected=cr)
@test isa(c, Float64)
@test c Cxy[1,1]
@inferred cov(x1, y1, cr)
@inferred cov(x1, y1, corrected=cr)

if vd == 1
@test cov(x1, Y) == Base.covm(x1, mean(x1), Y, mean(Y, 1))
end
C = zm ? Base.covm(x1, 0, Y, 0, vd, cr) :
cov(x1, Y, vd, cr)
C = zm ? Base.covm(x1, 0, Y, 0, vd, corrected=cr) :
cov(x1, Y, vd, corrected=cr)
@test size(C) == (1, k)
@test vec(C) Cxy[1,:]
@inferred cov(x1, Y, vd, cr)
@inferred cov(x1, Y, vd, corrected=cr)

if vd == 1
@test cov(X, y1) == Base.covm(X, mean(X, 1), y1, mean(y1))
end
C = zm ? Base.covm(X, 0, y1, 0, vd, cr) :
cov(X, y1, vd, cr)
C = zm ? Base.covm(X, 0, y1, 0, vd, corrected=cr) :
cov(X, y1, vd, corrected=cr)
@test size(C) == (k, 1)
@test vec(C) Cxy[:,1]
@inferred cov(X, y1, vd, cr)
@inferred cov(X, y1, vd, corrected=cr)

@test cov(X, Y) == Base.covm(X, mean(X, 1), Y, mean(Y, 1))
C = zm ? Base.covm(X, 0, Y, 0, vd, cr) :
cov(X, Y, vd, cr)
C = zm ? Base.covm(X, 0, Y, 0, vd, corrected=cr) :
cov(X, Y, vd, corrected=cr)
@test size(C) == (k, k)
@test C Cxy
@inferred cov(X, Y, vd, cr)
@inferred cov(X, Y, vd, corrected=cr)
end

# test correlation
Expand Down

0 comments on commit ac65741

Please sign in to comment.