Skip to content

Commit

Permalink
Merge pull request #2713 from jiahao/bdsqr
Browse files Browse the repository at this point in the history
Provides Bidiagonal matrix type and specialized SVD
  • Loading branch information
ViralBShah committed Mar 31, 2013
2 parents 2c50f21 + 57ae2f9 commit e09e9c5
Show file tree
Hide file tree
Showing 8 changed files with 299 additions and 19 deletions.
1 change: 1 addition & 0 deletions base/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ export
Array,
Associative,
AsyncStream,
Bidiagonal,
BitArray,
BigFloat,
BigInt,
Expand Down
2 changes: 2 additions & 0 deletions base/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ export
BunchKaufman,
SymTridiagonal,
Tridiagonal,
Bidiagonal,
Woodbury,
Factorization,
BunchKaufman,
Expand Down Expand Up @@ -166,6 +167,7 @@ include("linalg/triangular.jl")
include("linalg/hermitian.jl")
include("linalg/woodbury.jl")
include("linalg/tridiag.jl")
include("linalg/bidiag.jl")
include("linalg/diagonal.jl")
include("linalg/rectfullpacked.jl")

Expand Down
120 changes: 120 additions & 0 deletions base/linalg/bidiag.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
#### Specialized matrix types ####

## Bidiagonal matrices


type Bidiagonal{T} <: AbstractMatrix{T}
dv::Vector{T} # diagonal
ev::Vector{T} # sub/super diagonal
isupper::Bool # is upper bidiagonal (true) or lower (false)
function Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}, isupper::Bool)
if length(ev)!=length(dv)-1 error("dimension mismatch") end
new(dv, ev, isupper)
end
end

Bidiagonal{T<:BlasFloat}(dv::Vector{T}, ev::Vector{T}, isupper::Bool)=Bidiagonal{T}(copy(dv), copy(ev), isupper)
Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}) = error("Did you want an upper or lower Bidiagonal? Try again with an additional true (upper) or false (lower) argument.")


#Convert from BLAS uplo flag to boolean internal
function Bidiagonal{T<:BlasFloat}(dv::Vector{T}, ev::Vector{T}, uplo::BlasChar)
if uplo=='U'
isupper = true
elseif uplo=='L'
isupper = false
else
error(string("Bidiagonal can only be upper 'U' or lower 'L' but you said '", uplo, "'"))
end
Bidiagonal{T}(copy(dv), copy(ev), isupper)
end

function Bidiagonal{Td<:Number,Te<:Number}(dv::Vector{Td}, ev::Vector{Te}, isupper::Bool)
T = promote(Td,Te)
Bidiagonal(convert(Vector{T}, dv), convert(Vector{T}, ev), isupper)
end

Bidiagonal(A::AbstractMatrix, isupper::Bool)=Bidiagonal(diag(A), diag(A, isupper?1:-1), isupper)

#Converting from Bidiagonal to dense Matrix
full{T}(M::Bidiagonal{T}) = convert(Matrix{T}, M)
convert{T}(::Type{Matrix{T}}, A::Bidiagonal{T})=diagm(A.dv) + diagm(A.ev, A.isupper?1:-1)
promote_rule{T}(::Type{Matrix{T}}, ::Type{Bidiagonal{T}})=Matrix{T}
promote_rule{T,S}(::Type{Matrix{T}}, ::Type{Bidiagonal{S}})=Matrix{promote_type(T,S)}

#Converting from Bidiagonal to Tridiagonal
Tridiagonal{T}(M::Bidiagonal{T}) = convert(Tridiagonal{T}, M)
function convert{T}(::Type{Tridiagonal{T}}, A::Bidiagonal{T})
z = zeros(T, size(A)[1]-1)
A.isupper ? Tridiagonal(A.ev, A.dv, z) : Tridiagonal(z, A.dv, A.ev)
end
promote_rule{T}(::Type{Tridiagonal{T}}, ::Type{Bidiagonal{T}})=Tridiagonal{T}
promote_rule{T,S}(::Type{Tridiagonal{T}}, ::Type{Bidiagonal{S}})=Tridiagonal{promote_type(T,S)}


function show(io::IO, M::Bidiagonal)
println(io, summary(M), ":")
print(io, "diag: ")
print_matrix(io, (M.dv)')
print(io, M.isupper?"\n sup: ":"\n sub: ")
print_matrix(io, (M.ev)')
end

size(M::Bidiagonal) = (length(M.dv), length(M.dv))
size(M::Bidiagonal, d::Integer) = d<1 ? error("dimension out of range") : (d<=2 ? length(M.dv) : 1)

#Elementary operations
copy(M::Bidiagonal) = Bidiagonal(copy(M.dv), copy(M.ev), copy(M.isupper))
round(M::Bidiagonal) = Bidiagonal(round(M.dv), round(M.ev), M.isupper)
iround(M::Bidiagonal) = Bidiagonal(iround(M.dv), iround(M.ev), M.isupper)

conj(M::Bidiagonal) = Bidiagonal(conj(M.dv), conj(M.ev), M.isupper)
transpose(M::Bidiagonal) = Bidiagonal(M.dv, M.ev, !M.isupper)
ctranspose(M::Bidiagonal) = Bidiagonal(conj(M.dv), conj(M.ev), !M.isupper)

function +(A::Bidiagonal, B::Bidiagonal)
if A.isupper==B.isupper
Bidiagonal(A.dv+B.dv, A.ev+B.ev, A.isupper)
else #return tridiagonal
if A.isupper #&& !B.isupper
Tridiagonal(B.ev,A.dv+B.dv,A.ev)
else
Tridiagonal(A.ev,A.dv+B.dv,B.ev)
end
end
end

function -(A::Bidiagonal, B::Bidiagonal)
if A.isupper==B.isupper
Bidiagonal(A.dv-B.dv, A.ev-B.ev, A.isupper)
else #return tridiagonal
if A.isupper #&& !B.isupper
Tridiagonal(-B.ev,A.dv-B.dv,A.ev)
else
Tridiagonal(A.ev,A.dv-B.dv,-B.ev)
end
end
end

-(A::Bidiagonal)=Bidiagonal(-A.dv,-A.ev)
#XXX Returns dense matrix but really should be banded
*(A::Bidiagonal, B::Bidiagonal) = full(A)*full(B)
==(A::Bidiagonal, B::Bidiagonal) = (A.dv==B.dv) && (A.ev==B.ev) && (A.isupper==B.isupper)

# solver uses tridiagonal gtsv!
function \{T<:BlasFloat}(M::Bidiagonal{T}, rhs::StridedVecOrMat{T})
if stride(rhs, 1) == 1
z = zeros(size(M)[1])
if M.isupper
return LAPACK.gtsv!(z, copy(M.dv), copy(M.ev), copy(rhs))
else
return LAPACK.gtsv!(copy(M.ev), copy(M.dv), z, copy(rhs))
end
end
solve(M, rhs) # use the Julia "fallback"
end

#Wrap bdsdc to compute singular values and vectors
svdvals{T<:Real}(M::Bidiagonal{T})=LAPACK.bdsdc!(M.isupper?'U':'L', 'N', copy(M.dv), copy(M.ev))
svd {T<:Real}(M::Bidiagonal{T})=LAPACK.bdsdc!(M.isupper?'U':'L', 'I', copy(M.dv), copy(M.ev))

109 changes: 109 additions & 0 deletions base/linalg/lapack.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1659,6 +1659,115 @@ for (syconv, syev, sysv, sytrf, sytri, sytrs, elty, relty) in
end
end



#Find the leading dimension
ld = x->max(1,stride(x,2))
function validate(uplo)
if !(uplo=='U' || uplo=='L')
error(string("Invalid UPLO: must be 'U' or 'L' but you said", uplo))
end
end
## (BD) Bidiagonal matrices - singular value decomposition
for (bdsqr, relty, elty) in
((:dbdsqr_,:Float64,:Float64),
(:sbdsqr_,:Float32,:Float32),
(:zbdsqr_,:Float64,:Complex128),
(:cbdsqr_,:Float32,:Complex64))
@eval begin
#*> DBDSQR computes the singular values and, optionally, the right and/or
#*> left singular vectors from the singular value decomposition (SVD) of
#*> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
#*> zero-shift QR algorithm.
function bdsqr!(uplo::BlasChar, d::Vector{$relty}, e_::Vector{$relty},
vt::StridedMatrix{$elty}, u::StridedMatrix{$elty}, c::StridedMatrix{$elty})

validate(uplo)
n = length(d)
if length(e_) != n-1 throw(DimensionMismatch("bdsqr!")) end
ncvt, nru, ncc = size(vt)[2], size(u)[1], size(c)[2]
ldvt, ldu, ldc = ld(vt), ld(u), ld(c)
work=Array($elty, 4n)
info=Array(BlasInt,1)

ccall(($(string(bdsqr)),liblapack), Void,
(Ptr{BlasChar}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt},
Ptr{$elty}, Ptr{$elty}, Ptr{$elty}, Ptr{BlasInt}, Ptr{$elty},
Ptr{BlasInt}, Ptr{$elty}, Ptr{BlasInt}, Ptr{$elty}, Ptr{BlasInt}),
&uplo, &n, ncvt, &nru, &ncc,
d, e_, vt, &ldvt, u,
&ldu, c, &ldc, work, info)

if info[1] != 0 throw(LAPACKException(info[1])) end
d, vt, u, c #singular values in descending order, P**T * VT, U * Q, Q**T * C
end
end
end

#Defined only for real types
for (bdsdc, elty) in
((:dbdsdc_,:Float64),
(:sbdsdc_,:Float32))
@eval begin
#* DBDSDC computes the singular value decomposition (SVD) of a real
#* N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT,
#* using a divide and conquer method
#* .. Scalar Arguments ..
# CHARACTER COMPQ, UPLO
# INTEGER INFO, LDU, LDVT, N
#* ..
#* .. Array Arguments ..
# INTEGER IQ( * ), IWORK( * )
# DOUBLE PRECISION D( * ), E( * ), Q( * ), U( LDU, * ),
# $ VT( LDVT, * ), WORK( * )
function bdsdc!(uplo::BlasChar, compq::BlasChar, d::Vector{$elty}, e_::Vector{$elty})
validate(uplo)
n, ldiq, ldq, ldu, ldvt = length(d), 1, 1, 1, 1
if compq == 'N'
lwork = 4n
elseif compq == 'P'
warn("COMPQ='P' is not tested")
#TODO turn this into an actual LAPACK call
#smlsiz=ilaenv(9, $elty==:Float64 ? 'dbdsqr' : 'sbdsqr', string(uplo, compq), n,n,n,n)
smlsiz=100 #For now, completely overkill
ldq = n*(11+2*smlsiz+8*int(log((n/(smlsiz+1)))/log(2)))
ldiq = n*(3+3*int(log(n/(smlsiz+1))/log(2)))
lwork = 6n
elseif compq == 'I'
ldvt=ldu=max(1, n)
lwork=3*n^2 + 4n
else
error(string("Invalid COMPQ. Valid choices are 'N', 'P' or 'I' but you said '",compq,"'"))
end
u = Array($elty, (ldu, n))
vt= Array($elty, (ldvt, n))
q = Array($elty, ldq)
iq= Array(BlasInt, ldiq)
work =Array($elty, lwork)
iwork=Array(BlasInt, 7n)
info =Array(BlasInt, 1)
ccall(($(string(bdsdc)),liblapack), Void,
(Ptr{BlasChar}, Ptr{BlasChar}, Ptr{BlasInt}, Ptr{$elty}, Ptr{$elty},
Ptr{$elty}, Ptr{BlasInt}, Ptr{$elty}, Ptr{BlasInt},
Ptr{$elty}, Ptr{BlasInt}, Ptr{$elty}, Ptr{BlasInt}, Ptr{BlasInt}),
&uplo, &compq, &n, d, e_,
u, &ldu, vt, &ldvt,
q, iq, work, iwork, info)

if info[1] != 0 throw(LAPACKException(info[1])) end
if compq == 'N'
d
elseif compq == 'P'
d, q, iq
else #compq == 'I'
u, d, vt'
end
end
end
end



# New symmetric eigen solver
for (syevr, elty) in
((:dsyevr_,:Float64),
Expand Down
18 changes: 5 additions & 13 deletions base/linalg/tridiag.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,17 +23,9 @@ function SymTridiagonal{Td<:Number,Te<:Number}(dv::Vector{Td}, ev::Vector{Te})
SymTridiagonal(convert(Vector{T}, dv), convert(Vector{T}, ev))
end

SymTridiagonal(A::AbstractMatrix) = SymTridiagonal(diag(A), diag(A,1))

SymTridiagonal(M::AbstractMatrix) = diag(A,1)==diag(A,-1)?SymTridiagonal(diag(A), diag(A,1)):error("Matrix is not symmetric, cannot convert to SymTridiagonal")
full{T}(M::SymTridiagonal{T}) = convert(Matrix{T}, M)
function convert{T}(::Type{Matrix{T}}, S::SymTridiagonal{T})
M = diagm(S.dv)
for i in 1:length(S.ev)
j = i + 1
M[i,j] = M[j,i] = S.ev[i]
end
M
end
convert{T}(::Type{Matrix{T}}, M::SymTridiagonal{T})=diagm(M.dv)+diagm(M.ev,-1)+diagm(M.ev,1)

function show(io::IO, S::SymTridiagonal)
println(io, summary(S), ":")
Expand Down Expand Up @@ -96,8 +88,8 @@ end

function Tridiagonal{T<:Number}(dl::Vector{T}, d::Vector{T}, du::Vector{T})
N = length(d)
if length(dl) != N-1 || length(du) != N-1
error("The sub- and super-diagonals must have length N-1")
if (length(dl) != N-1 || length(du) != N-1)
error(string("Cannot make Tridiagonal from incompatible lengths of subdiagonal, diagonal and superdiagonal: (", length(dl), ", ", length(d), ", ", length(du),")"))
end
M = Tridiagonal{T}(N)
M.dl = copy(dl)
Expand Down Expand Up @@ -160,7 +152,7 @@ ctranspose(M::Tridiagonal) = conj(transpose(M))
==(A::SymTridiagonal, B::SymTridiagonal) = B==A

# Elementary operations that mix Tridiagonal and SymTridiagonal matrices
Tridiagonal(A::SymTridiagonal) = Tridiagonal(A.dv, A.ev, A.dv)
convert(::Type{Tridiagonal}, A::SymTridiagonal) = Tridiagonal(A.ev, A.dv, A.ev)
+(A::Tridiagonal, B::SymTridiagonal) = Tridiagonal(A.dl+B.ev, A.d+B.dv, A.du+B.ev)
+(A::SymTridiagonal, B::Tridiagonal) = Tridiagonal(A.ev+B.dl, A.dv+B.d, A.ev+B.du)
-(A::Tridiagonal, B::SymTridiagonal) = Tridiagonal(A.dl-B.ev, A.d-B.dv, A.du-B.ev)
Expand Down
7 changes: 7 additions & 0 deletions doc/helpdb.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5094,6 +5094,13 @@
"),

("Linear Algebra","","Bidiagonal","Bidiagonal(dv, ev, isupper)
Construct an upper (isupper=true) or lower (isupper=false) bidiagonal matrix
from the given diagonal (dv) and off-diagonal (ev) vectors.
"),

("Linear Algebra","","Woodbury","Woodbury(A, U, C, V)
Construct a matrix in a form suitable for applying the Woodbury
Expand Down
5 changes: 5 additions & 0 deletions doc/stdlib/linalg.rst
Original file line number Diff line number Diff line change
Expand Up @@ -175,6 +175,11 @@ Linear algebra functions in Julia are largely implemented by calling functions f

Construct a tridiagonal matrix from the lower diagonal, diagonal, and upper diagonal

.. function:: Bidiagonal(dv, ev, isupper)

Constructs an upper (isupper=true) or lower (isupper=false) bidiagonal matrix
using the given diagonal (dv) and off-diagonal (ev) vectors

.. function:: Woodbury(A, U, C, V)

Construct a matrix in a form suitable for applying the Woodbury matrix identity
Expand Down
Loading

0 comments on commit e09e9c5

Please sign in to comment.