-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2713 from jiahao/bdsqr
Provides Bidiagonal matrix type and specialized SVD
- Loading branch information
Showing
8 changed files
with
299 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -22,6 +22,7 @@ export | |
Array, | ||
Associative, | ||
AsyncStream, | ||
Bidiagonal, | ||
BitArray, | ||
BigFloat, | ||
BigInt, | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
#### Specialized matrix types #### | ||
|
||
## Bidiagonal matrices | ||
|
||
|
||
type Bidiagonal{T} <: AbstractMatrix{T} | ||
dv::Vector{T} # diagonal | ||
ev::Vector{T} # sub/super diagonal | ||
isupper::Bool # is upper bidiagonal (true) or lower (false) | ||
function Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}, isupper::Bool) | ||
if length(ev)!=length(dv)-1 error("dimension mismatch") end | ||
new(dv, ev, isupper) | ||
end | ||
end | ||
|
||
Bidiagonal{T<:BlasFloat}(dv::Vector{T}, ev::Vector{T}, isupper::Bool)=Bidiagonal{T}(copy(dv), copy(ev), isupper) | ||
Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}) = error("Did you want an upper or lower Bidiagonal? Try again with an additional true (upper) or false (lower) argument.") | ||
|
||
|
||
#Convert from BLAS uplo flag to boolean internal | ||
function Bidiagonal{T<:BlasFloat}(dv::Vector{T}, ev::Vector{T}, uplo::BlasChar) | ||
if uplo=='U' | ||
isupper = true | ||
elseif uplo=='L' | ||
isupper = false | ||
else | ||
error(string("Bidiagonal can only be upper 'U' or lower 'L' but you said '", uplo, "'")) | ||
end | ||
Bidiagonal{T}(copy(dv), copy(ev), isupper) | ||
end | ||
|
||
function Bidiagonal{Td<:Number,Te<:Number}(dv::Vector{Td}, ev::Vector{Te}, isupper::Bool) | ||
T = promote(Td,Te) | ||
Bidiagonal(convert(Vector{T}, dv), convert(Vector{T}, ev), isupper) | ||
end | ||
|
||
Bidiagonal(A::AbstractMatrix, isupper::Bool)=Bidiagonal(diag(A), diag(A, isupper?1:-1), isupper) | ||
|
||
#Converting from Bidiagonal to dense Matrix | ||
full{T}(M::Bidiagonal{T}) = convert(Matrix{T}, M) | ||
convert{T}(::Type{Matrix{T}}, A::Bidiagonal{T})=diagm(A.dv) + diagm(A.ev, A.isupper?1:-1) | ||
promote_rule{T}(::Type{Matrix{T}}, ::Type{Bidiagonal{T}})=Matrix{T} | ||
promote_rule{T,S}(::Type{Matrix{T}}, ::Type{Bidiagonal{S}})=Matrix{promote_type(T,S)} | ||
|
||
#Converting from Bidiagonal to Tridiagonal | ||
Tridiagonal{T}(M::Bidiagonal{T}) = convert(Tridiagonal{T}, M) | ||
function convert{T}(::Type{Tridiagonal{T}}, A::Bidiagonal{T}) | ||
z = zeros(T, size(A)[1]-1) | ||
A.isupper ? Tridiagonal(A.ev, A.dv, z) : Tridiagonal(z, A.dv, A.ev) | ||
end | ||
promote_rule{T}(::Type{Tridiagonal{T}}, ::Type{Bidiagonal{T}})=Tridiagonal{T} | ||
promote_rule{T,S}(::Type{Tridiagonal{T}}, ::Type{Bidiagonal{S}})=Tridiagonal{promote_type(T,S)} | ||
|
||
|
||
function show(io::IO, M::Bidiagonal) | ||
println(io, summary(M), ":") | ||
print(io, "diag: ") | ||
print_matrix(io, (M.dv)') | ||
print(io, M.isupper?"\n sup: ":"\n sub: ") | ||
print_matrix(io, (M.ev)') | ||
end | ||
|
||
size(M::Bidiagonal) = (length(M.dv), length(M.dv)) | ||
size(M::Bidiagonal, d::Integer) = d<1 ? error("dimension out of range") : (d<=2 ? length(M.dv) : 1) | ||
|
||
#Elementary operations | ||
copy(M::Bidiagonal) = Bidiagonal(copy(M.dv), copy(M.ev), copy(M.isupper)) | ||
round(M::Bidiagonal) = Bidiagonal(round(M.dv), round(M.ev), M.isupper) | ||
iround(M::Bidiagonal) = Bidiagonal(iround(M.dv), iround(M.ev), M.isupper) | ||
|
||
conj(M::Bidiagonal) = Bidiagonal(conj(M.dv), conj(M.ev), M.isupper) | ||
transpose(M::Bidiagonal) = Bidiagonal(M.dv, M.ev, !M.isupper) | ||
ctranspose(M::Bidiagonal) = Bidiagonal(conj(M.dv), conj(M.ev), !M.isupper) | ||
|
||
function +(A::Bidiagonal, B::Bidiagonal) | ||
if A.isupper==B.isupper | ||
Bidiagonal(A.dv+B.dv, A.ev+B.ev, A.isupper) | ||
else #return tridiagonal | ||
if A.isupper #&& !B.isupper | ||
Tridiagonal(B.ev,A.dv+B.dv,A.ev) | ||
else | ||
Tridiagonal(A.ev,A.dv+B.dv,B.ev) | ||
end | ||
end | ||
end | ||
|
||
function -(A::Bidiagonal, B::Bidiagonal) | ||
if A.isupper==B.isupper | ||
Bidiagonal(A.dv-B.dv, A.ev-B.ev, A.isupper) | ||
else #return tridiagonal | ||
if A.isupper #&& !B.isupper | ||
Tridiagonal(-B.ev,A.dv-B.dv,A.ev) | ||
else | ||
Tridiagonal(A.ev,A.dv-B.dv,-B.ev) | ||
end | ||
end | ||
end | ||
|
||
-(A::Bidiagonal)=Bidiagonal(-A.dv,-A.ev) | ||
#XXX Returns dense matrix but really should be banded | ||
*(A::Bidiagonal, B::Bidiagonal) = full(A)*full(B) | ||
==(A::Bidiagonal, B::Bidiagonal) = (A.dv==B.dv) && (A.ev==B.ev) && (A.isupper==B.isupper) | ||
|
||
# solver uses tridiagonal gtsv! | ||
function \{T<:BlasFloat}(M::Bidiagonal{T}, rhs::StridedVecOrMat{T}) | ||
if stride(rhs, 1) == 1 | ||
z = zeros(size(M)[1]) | ||
if M.isupper | ||
return LAPACK.gtsv!(z, copy(M.dv), copy(M.ev), copy(rhs)) | ||
else | ||
return LAPACK.gtsv!(copy(M.ev), copy(M.dv), z, copy(rhs)) | ||
end | ||
end | ||
solve(M, rhs) # use the Julia "fallback" | ||
end | ||
|
||
#Wrap bdsdc to compute singular values and vectors | ||
svdvals{T<:Real}(M::Bidiagonal{T})=LAPACK.bdsdc!(M.isupper?'U':'L', 'N', copy(M.dv), copy(M.ev)) | ||
svd {T<:Real}(M::Bidiagonal{T})=LAPACK.bdsdc!(M.isupper?'U':'L', 'I', copy(M.dv), copy(M.ev)) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.