Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding rtol and atol for pinv and nullspace #29998

Merged
merged 12 commits into from
Dec 11, 2018
48 changes: 33 additions & 15 deletions stdlib/LinearAlgebra/src/dense.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1201,13 +1201,14 @@ factorize(A::Transpose) = transpose(factorize(parent(A)))
## Moore-Penrose pseudoinverse

"""
pinv(M[, rtol::Real])
pinv(M, atol::Real, rtol::Real)
sam0410 marked this conversation as resolved.
Show resolved Hide resolved
pinv(M[, tol::Real]) = pinv(M, rtol=tol)

Computes the Moore-Penrose pseudoinverse.

For matrices `M` with floating point elements, it is convenient to compute
the pseudoinverse by inverting only singular values greater than
`rtol * maximum(svdvals(M))`.
`max(atol, rtol * maximum(svdvals(M)))`.

The optimal choice of `rtol` varies both with the value of `M` and the intended application
of the pseudoinverse. The default value of `rtol` is
Expand Down Expand Up @@ -1244,7 +1245,7 @@ julia> M * N

[^KY88]: Konstantinos Konstantinides and Kung Yao, "Statistical analysis of effective singular values in matrix rank determination", IEEE Transactions on Acoustics, Speech and Signal Processing, 36(5), 1988, 757-763. [doi:10.1109/29.1585](https://doi.org/10.1109/29.1585)
"""
function pinv(A::AbstractMatrix{T}, rtol::Real) where T
function pinv(A::AbstractMatrix{T}; atol::Real = 0.0, rtol::Real = (eps(real(float(one(T))))*min(size(A)...))*iszero(atol)) where T
m, n = size(A)
Tout = typeof(zero(T)/sqrt(one(T) + one(T)))
if m == 0 || n == 0
Expand All @@ -1253,9 +1254,10 @@ function pinv(A::AbstractMatrix{T}, rtol::Real) where T
if istril(A)
if istriu(A)
maxabsA = maximum(abs.(diag(A)))
tol = max(rtol*maxabsA, atol)
B = zeros(Tout, n, m)
for i = 1:min(m, n)
if abs(A[i,i]) > rtol*maxabsA
if abs(A[i,i]) > tol
Aii = inv(A[i,i])
if isfinite(Aii)
B[i,i] = Aii
Expand All @@ -1266,17 +1268,15 @@ function pinv(A::AbstractMatrix{T}, rtol::Real) where T
end
end
SVD = svd(A, full = false)
tol = max(rtol*maximum(SVD.S), atol)
Stype = eltype(SVD.S)
Sinv = zeros(Stype, length(SVD.S))
index = SVD.S .> rtol*maximum(SVD.S)
index = SVD.S .> tol
Sinv[index] = one(Stype) ./ SVD.S[index]
Sinv[findall(.!isfinite.(Sinv))] .= zero(Stype)
return SVD.Vt' * (Diagonal(Sinv) * SVD.U')
end
function pinv(A::AbstractMatrix{T}) where T
rtol = eps(real(float(one(T))))*min(size(A)...)
return pinv(A, rtol)
end
pinv(A::AbstractMatrix{T}, tol::Real) where T = nullspace(A, rtol=tol) # TODO: deprecate tol in 2.0
function pinv(x::Number)
xi = inv(x)
return ifelse(isfinite(xi), xi, zero(xi))
Expand All @@ -1285,11 +1285,12 @@ end
## Basis for null space

"""
nullspace(M[, rtol::Real])
nullspace(M, atol::Real, rtol::Real)
sam0410 marked this conversation as resolved.
Show resolved Hide resolved
nullspace(M[, tol::Real]) = nullspace(M, rtol=tol)

Computes a basis for the nullspace of `M` by including the singular
vectors of A whose singular have magnitude are greater than `rtol*σ₁`,
where `σ₁` is `A`'s largest singular values. By default, the value of
vectors of A whose singular have magnitude are greater than `max(atol, rtol*σ₁)`,
where `σ₁` is `A`'s largest singular value. By default, the value of
`rtol` is the smallest dimension of `A` multiplied by the [`eps`](@ref)
of the [`eltype`](@ref) of `A`.

Expand All @@ -1312,16 +1313,33 @@ julia> nullspace(M, 2)
0.0 1.0 0.0
1.0 0.0 0.0
0.0 0.0 1.0

julia> nullspace(M, rtol=3)
3×3 Array{Float64,2}:
0.0 1.0 0.0
1.0 0.0 0.0
0.0 0.0 1.0

julia> nullspace(M, atol=0.95)
3×1 Array{Float64,2}:
0.0
0.0
1.0
```
"""
function nullspace(A::AbstractMatrix, rtol::Real = min(size(A)...)*eps(real(float(one(eltype(A))))))
function nullspace(A::AbstractMatrix; atol::Real = 0.0, rtol::Real = (min(size(A)...)*eps(real(float(one(eltype(A))))))*iszero(atol))
m, n = size(A)
(m == 0 || n == 0) && return Matrix{eltype(A)}(I, n, n)
SVD = svd(A, full=true)
indstart = sum(s -> s .> SVD.S[1]*rtol, SVD.S) + 1
tol = max(atol, SVD.S[1]*rtol)
indstart = sum(s -> s .> tol, SVD.S) + 1
return copy(SVD.Vt[indstart:end,:]')
end
nullspace(a::AbstractVector, rtol::Real = min(size(a)...)*eps(real(float(one(eltype(a)))))) = nullspace(reshape(a, length(a), 1), rtol)
nullspace(A::AbstractMatrix, tol::Real) = nullspace(A, rtol=tol) # TODO: deprecate tol in 2.0

nullspace(A::AbstractVector; atol::Real = 0.0, rtol::Real = (min(size(A)...)*eps(real(float(one(eltype(A))))))*iszero(atol)) = nullspace(reshape(a, length(a), 1), rtol= rtol, atol= atol)

nullspace(A::AbstractVector, tol::Real) = nullspace(reshape(a, length(a), 1), rtol= tol) # TODO: deprecate tol in 2.0

"""
cond(M, p::Real=2)
Expand Down
8 changes: 8 additions & 0 deletions stdlib/LinearAlgebra/test/dense.jl
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,8 @@ bimg = randn(n,2)/2
@test norm(a[:,1:n1]'a15null,Inf) ≈ zero(eltya) atol=300ε
@test norm(a15null'a[:,1:n1],Inf) ≈ zero(eltya) atol=400ε
@test size(nullspace(b), 2) == 0
@test size(nullspace(b, rtol=2), 2) != 0
@test size(nullspace(b, atol=2), 2) == 0
@test size(nullspace(b, 100*εb), 2) == 0
@test nullspace(zeros(eltya,n)) == Matrix(I, 1, 1)
@test nullspace(zeros(eltya,n), 0.1) == Matrix(I, 1, 1)
Expand All @@ -82,6 +84,12 @@ bimg = randn(n,2)/2
end
end # for eltyb

@testset "Test pinv (rtol, atol)" begin
M = [1 0 0; 0 1 0; 0 0 0]
@test pinv(M,atol=1)== zeros(3,3)
@test pinv(M,rtol=0.5)== M
end

for (a, a2) in ((copy(ainit), copy(ainit2)), (view(ainit, 1:n, 1:n), view(ainit2, 1:n, 1:n)))
@testset "Test pinv" begin
pinva15 = pinv(a[:,1:n1])
Expand Down