This repo is an update 2D-3D pose tracking version to ubuntu20 + cuda11.8 + ros noetic + anaconda pytorch2.4
From orginal repo 2D-3D pose tracking
An upload 2D line detection version is afm_cvpr2019
An update 3D line detection version is 3D line detection
wget http://fishros.com/install -O fishros && . fishros
conda create -n plp_dl python=3.9
conda activate plp_dl
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# test with python and output need to be True
python -c "import torch; print(torch.cuda.is_available())"
conda activate plp_dl
mkdir -p ~/plp_ws/src
cd ~/plp_ws/src/
git clone https://github.com/Longxiaoze/VINS-Mono.git
git clone https://github.com/Longxiaoze/2D-3D-pose-tracking.git
cd 2D-3D-pose-tracking/afm/scripts/
pip install -r requirements.txt
pip install empy==3.3.2 catkin_pkg rospkg
cd lib/
make
conda develop . ./lib
cd ../../../../../
cp ~/plp_ws/src/2D-3D-pose-tracking/VINS-Mono-config/vins_rviz_config.rviz ~/plp_ws/src/VINS-Mono/config/
catkin_make
Change the output frequency of VINS-Mono VINS-Mono\config\euroc\euroc_config.yaml
to 15 Hz freq: 15
.
conda activate plp_dl
source ~/plp_ws/devel/setup.bash
roslaunch vins_estimator euroc.launch
change first line in file ~/plp_ws/src/2D-3D-pose-tracking/afm/scripts/ros_test.py
to #!path_to_anaconda3/envs/plp_dl(env_path)/bin/python
conda activate plp_dl
source ~/plp_ws/devel/setup.bash
roslaunch map_fusion euroc_tracking.launch
conda activate plp_dl
source ~/plp_ws/devel/setup.bash
roslaunch vins_estimator vins_rviz.launch
conda activate plp_dl
source ~/plp_ws/devel/setup.bash
rosbag play /media/ubuntu20-jrl/DATA/datasets/euroc/V1_02_medium.bag
The video demos can be seen: Corridors EuRoC
2D-3D pose tracking is a real-time camera localization framework with prior LiDAR maps. It detects geometric 3D lines offline from LiDAR maps and use AFM to detect 2D lines from video sequences online. With the pose prediction from VIO, we can efficiently obtain coarse 2D-3D line correspondences. After that, camera poses and 2D-3D correspondences are iteratively optimized by minimizing the projection error of correspondences and rejecting outliers. The 2D-3D correspondences greatly reduce the pose drifts of VIO system without using visual-revisiting loop closure. This code runs on Linux.
1.1 Ubuntu and ROS. Ubuntu 18.04. ROS Melodic.
1.2 python 2.7, CUDA and pytorch. Follow CUDA Installation and pytorch installation.
1.3. Ceres Solver. Follow Ceres Installation
1.4 VINS-Mono Follow VINS-Mono
The afm 2D line detection package is modified by the original afm_cvpr2019. Independent conda testing is strongly recommend.
An upload version is afm_cvpr2019 2d line detection
cd catkin_ws/src/afm/scripts
pip install -r requirements.txt
pip install torch torchvision
cd lib
make
cd ../../../../
catkin_make
source ~/catkin_ws/devel/setup.bash
We follow 3D line detection to detect geometric 3D lines and the results are included.
An update version is 3D line detection
Clone the repository and catkin_make:
cd ~/catkin_ws/src
git clone https://github.com/HKUST-Aerial-Robotics/VINS-Mono.git
cd ../
catkin_make
source ~/catkin_ws/devel/setup.bash
Download EuRoC MAV Dataset. Although it contains stereo cameras, we only use one camera.
Before testing, copy the new vins_rviz_config.rviz
file to VINS-Mono\config
path. Change the output frequency of VINS-Mono VINS-Mono\config\euroc\euroc_config.yaml
to 15 Hz freq: 15
.
Open four terminals, launch the vins_estimator, map_fusion, rviz and play the bag file respectively. Take V1_02_medium.bag for example
roslaunch vins_estimator euroc.launch
roslaunch map_fusion euroc_tracking.launch
roslaunch vins_estimator vins_rviz.launch
rosbag play YOUR_PATH_TO_DATASET/V1_02_medium.bag
Download Corridors data
To run VINS-Mono on this data,
cp src/2D-3D-pose-tracking/VINS-Mono-config/realsense_infra1_config.yaml src/VINS-Mono/config/realsense/
cp src/2D-3D-pose-tracking/VINS-Mono-config/realsense_infra.launch src/VINS-Mono/vins_estimator/launch/
Then,
roslaunch vins_estimator realsense_infra.launch
roslaunch map_fusion realsense_tracking.launch
roslaunch vins_estimator vins_rviz.launch
rosbag play YOUR_PATH_TO_DATASET/corridors.bag
@inproceedings{Yu2020MonocularCL,
title={Monocular Camera Localization in Prior LiDAR Maps with 2D-3D Line Correspondences},
author={Huai Yu and Weikun Zhen and Wen Yang and Ji Zhang and Sebastian Scherer},
journal={arXiv preprint arXiv:2004.00740},
year={2020}
}
[1] Qin, Tong, Peiliang Li, and Shaojie Shen. "Vins-mono: A robust and versatile monocular visual-inertial state estimator." IEEE Transactions on Robotics 34.4 (2018): 1004-1020.
[2] Xue, Nan, et al. "Learning attraction field representation for robust line segment detection." IEEE Conference on Computer Vision and Pattern Recognition. 2019.
[3] Lu, Xiaohu, Yahui Liu, and Kai Li. "Fast 3D Line Segment Detection From Unorganized Point Cloud." arXiv preprint arXiv:1901.02532 (2019).