Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FIX] Ignore non-significant kappa elbow when no non-significant kappa values exist #760

Merged
merged 7 commits into from
Jul 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 22 additions & 0 deletions tedana/selection/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,17 @@ def getelbow_cons(arr, return_val=False):
"""
if arr.ndim != 1:
raise ValueError('Parameter arr should be 1d, not {0}d'.format(arr.ndim))

if not arr.size:
raise ValueError(
"Empty array detected during elbow calculation. "
"This error happens when getelbow_cons is incorrectly called on no components. "
"If you see this message, please open an issue at "
"https://github.com/ME-ICA/tedana/issues with the full traceback and any data "
"necessary to reproduce this error, so that we create additional data checks to "
"prevent this from happening."
)

arr = np.sort(arr)[::-1]
nk = len(arr)
temp1 = [(arr[nk - 5 - ii - 1] > arr[nk - 5 - ii:nk].mean() + 2 * arr[nk - 5 - ii:nk].std())
Expand Down Expand Up @@ -79,6 +90,17 @@ def getelbow(arr, return_val=False):
"""
if arr.ndim != 1:
raise ValueError('Parameter arr should be 1d, not {0}d'.format(arr.ndim))

if not arr.size:
raise ValueError(
"Empty array detected during elbow calculation. "
"This error happens when getelbow is incorrectly called on no components. "
"If you see this message, please open an issue at "
"https://github.com/ME-ICA/tedana/issues with the full traceback and any data "
"necessary to reproduce this error, so that we create additional data checks to "
"prevent this from happening."
)

arr = np.sort(arr)[::-1]
n_components = arr.shape[0]
coords = np.array([np.arange(n_components), arr])
Expand Down
22 changes: 16 additions & 6 deletions tedana/selection/tedica.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,13 +245,23 @@ def kundu_selection_v2(comptable, n_echos, n_vols):
# Compute elbows from other elbows
f05, _, f01 = getfbounds(n_echos)
kappas_nonsig = comptable.loc[comptable['kappa'] < f01, 'kappa']
if not kappas_nonsig.size:
LGR.warning(
"No nonsignificant kappa values detected. "
"Only using elbow calculated from all kappa values."
)
kappas_nonsig_elbow = np.nan
else:
kappas_nonsig_elbow = getelbow(kappas_nonsig, return_val=True)

kappas_all_elbow = getelbow(comptable['kappa'], return_val=True)

# NOTE: Would an elbow from all Kappa values *ever* be lower than one from
# a subset of lower values?
kappa_elbow = np.min((getelbow(kappas_nonsig, return_val=True),
getelbow(comptable['kappa'], return_val=True)))
rho_elbow = np.mean((getelbow(comptable.loc[ncls, 'rho'], return_val=True),
getelbow(comptable['rho'], return_val=True),
f05))
# a subset of lower (i.e., nonsignificant) values?
kappa_elbow = np.nanmin((kappas_all_elbow, kappas_nonsig_elbow))
rhos_ncls_elbow = getelbow(comptable.loc[ncls, 'rho'], return_val=True)
rhos_all_elbow = getelbow(comptable['rho'], return_val=True)
rho_elbow = np.mean((rhos_ncls_elbow, rhos_all_elbow, f05))

# Provisionally accept components based on Kappa and Rho elbows
acc_prov = ncls[(comptable.loc[ncls, 'kappa'] >= kappa_elbow) &
Expand Down
45 changes: 45 additions & 0 deletions tedana/tests/test_selection_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
"""Tests for the tedana.selection._utils module."""
import numpy as np
import pytest

from tedana.selection import _utils


def test_getelbow_smoke():
"""A smoke test for the getelbow function."""
arr = np.random.random(100)
idx = _utils.getelbow(arr)
assert isinstance(idx, np.integer)

val = _utils.getelbow(arr, return_val=True)
assert isinstance(val, float)

# Running an empty array should raise a ValueError
arr = np.array([])
with pytest.raises(ValueError):
_utils.getelbow(arr)

# Running a 2D array should raise a ValueError
arr = np.random.random((100, 100))
with pytest.raises(ValueError):
_utils.getelbow(arr)


def test_getelbow_cons():
"""A smoke test for the getelbow_cons function."""
arr = np.random.random(100)
idx = _utils.getelbow_cons(arr)
assert isinstance(idx, np.integer)

val = _utils.getelbow_cons(arr, return_val=True)
assert isinstance(val, float)

# Running an empty array should raise a ValueError
arr = np.array([])
with pytest.raises(ValueError):
_utils.getelbow_cons(arr)

# Running a 2D array should raise a ValueError
arr = np.random.random((100, 100))
with pytest.raises(ValueError):
_utils.getelbow_cons(arr)