This classifier webapp basically developed using Streamlit (Python - framework) and it classifies the categories of "Diabetic" or "Not Diabetic" based on certain input parameters. In this app we can choose different classifiers like; SVM, RandomForest, GridSearch, Logistics Regression, for the classification. This app can also generate a visualized report with patient's data.
This webapp deployed on heroku. app-link : https://diabetes-detection-pima-app.herokuapp.com/
- Python3 (Programming Language)
- Streamlit (Python-Framework)
- Jupyter Notebook
- VS Code (IDE)
- Linux-Ubuntu:20.04 (OS)
- NumPy
- Pandas
- Matplotlib
- Seaborn
- sklearn.model_selection - train_test_split
- sklearn.svm - SVC
- sklearn.ensemble - RandomForestClassifier
- sklearn.linear_model - LogisticRegression
- sklearn.model_selection - GridSearchCV
- GitHub
- Heroku (PaaS)