Skip to content

MultitudinousMikes/Tour-Vancouver-with-OSM-data

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CMPT353Project

Tour Vancouver with OSM data

Description

This project aims to provide useful information and advice for tourists in Metro Vancouver. Three aspects are discussed in this project. For public transportation, we extract relevant information from OSM, and perform DBSCAN clustering to find dense areas and the airbnb housings close to them. For Restaurants, ...

Getting Started

Dependencies

  • install following packages before running the program
pip install numpy 
pip install pandas
pip install matplotlib
pip install geopy
pip install geopandas
pip install -U scikit-learn
pip install statsmodels
pip install exif

Executing program

In the hdfs, run osm-transport_stop.py. The input is the osm file in the SFU compute cluster and the output is transport_ stop

spark-submit osm-transport_stop.py /courses/datasets/openstreetmaps transport_stop

Run the just-vancouver.py to extract vancouver data.

spark-submit just-vancouver.py transport_stop transport_stop-vancouver

Run the proj.py which takes transport_stop-vancouver.json and listings.csv as input files. It will output the file ideal_airbnb.csv

python3 proj.py transport_stop-vancouver.json listings.csv

Run the scenery_extract.py which take amenities-vancouver.json.gz as the input file

spark-submit scenery_extract.py amenities-vancouver.json.gz output

Run the attraction_analyse.py then choose one image from \CMPT353Project-main\images and text message from location.txt after the program starts executing

python3 attraction_analyse.py

Run the restaurant- analysis.py which take amenities-vancouver.json.gz as input file.

python3 analysis.py amenities-vancouver.json.gz

Acknowledgements

The course material provided by Professor Baker.

https://www150.statcan.gc.ca/n1/daily-quotidien/200602/dq200602a-eng.htm

https://stackoverflow.com/questions/4971269/how-to-pick-a-new-color-for-each-plotted-line-within-a-figure-in-matplotlib

https://stackoverflow.com/questions/27928/calculate-distance-between-two-latitude-longitude-points-haversine-formula/21623206

https://stackoverflow.com/questions/32464280/converting-currency-with-to-numbers-in-python-pandas

https://geoffboeing.com/2014/08/clustering-to-reduce-spatial-data-set-size/

https://towardsdatascience.com/easy-steps-to-plot-geographic-data-on-a-map-python-11217859a2db

https://medium.com/spatial-data-science/how-to-extract-gps-coordinates-from-images-in-python-e66e542af354

https://towardsdatascience.com/geocode-with-python-161ec1e62b89

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.html

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages