Skip to content

Commit

Permalink
Fix test.py bug
Browse files Browse the repository at this point in the history
  • Loading branch information
mingyuliutw committed May 3, 2018
1 parent 9121f3a commit 0f628ed
Showing 1 changed file with 70 additions and 44 deletions.
114 changes: 70 additions & 44 deletions test.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@
"""
from __future__ import print_function
from utils import get_config, get_data_loader_folder
from trainer import MUNIT_Trainer
from optparse import OptionParser
from trainer import MUNIT_Trainer, UNIT_Trainer
import argparse
from torch.autograd import Variable
import torchvision.utils as vutils
import sys
Expand All @@ -14,50 +14,70 @@
from torchvision import transforms
from PIL import Image

parser = OptionParser()
parser.add_option('--config', type=str, help="net configuration")
parser.add_option('--input', type=str, help="input image path")
parser.add_option('--output_folder', type=str, help="output image path")
parser.add_option('--checkpoint', type=str, help="checkpoint of autoencoders")
parser.add_option('--style', type=str, default='', help="style image path")
parser.add_option('--a2b', type=int, default=1, help="1 for a2b and others for b2a")
parser.add_option('--seed', type=int, default=10, help="random seed")
parser.add_option('--num_style',type=int, default=10, help="number of styles to sample")
parser.add_option('--synchronized', action='store_true', help="whether use synchronized style code or not")
parser.add_option('--output_only', action='store_true', help="whether use synchronized style code or not")
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help="net configuration")
parser.add_argument('--input', type=str, help="input image path")
parser.add_argument('--output_folder', type=str, help="output image path")
parser.add_argument('--checkpoint', type=str, help="checkpoint of autoencoders")
parser.add_argument('--style', type=str, default='', help="style image path")
parser.add_argument('--a2b', type=int, default=1, help="1 for a2b and others for b2a")
parser.add_argument('--seed', type=int, default=10, help="random seed")
parser.add_argument('--num_style',type=int, default=10, help="number of styles to sample")
parser.add_argument('--synchronized', action='store_true', help="whether use synchronized style code or not")
parser.add_argument('--output_only', action='store_true', help="whether use synchronized style code or not")
parser.add_argument('--output_path', type=str, default='.', help="path for logs, checkpoints, and VGG model weight")
parser.add_argument('--trainer', type=str, default='MUNIT', help="MUNIT|UNIT")

def main(argv):
(opts, args) = parser.parse_args(argv)
torch.manual_seed(opts.seed)
torch.cuda.manual_seed(opts.seed)
if not os.path.exists(opts.output_folder):
os.makedirs(opts.output_folder)

# Load experiment setting
config = get_config(opts.config)
style_dim = config['gen']['style_dim']
opts.num_style = 1 if opts.style != '' else opts.num_style
opts = parser.parse_args()


torch.manual_seed(opts.seed)
torch.cuda.manual_seed(opts.seed)
if not os.path.exists(opts.output_folder):
os.makedirs(opts.output_folder)

# Setup model and data loader
# Load experiment setting
config = get_config(opts.config)
opts.num_style = 1 if opts.style != '' else opts.num_style

# Setup model and data loader
config['vgg_model_path'] = opts.output_path
if opts.trainer == 'MUNIT':
style_dim = config['gen']['style_dim']
trainer = MUNIT_Trainer(config)
state_dict = torch.load(opts.checkpoint)
trainer.gen_a.load_state_dict(state_dict['a'])
trainer.gen_b.load_state_dict(state_dict['b'])
trainer.cuda()
trainer.eval()
encode = trainer.gen_a.encode if opts.a2b else trainer.gen_b.encode # encode function
style_encode = trainer.gen_b.encode if opts.a2b else trainer.gen_a.encode # encode function
decode = trainer.gen_b.decode if opts.a2b else trainer.gen_a.decode # decode function
elif opts.trainer == 'UNIT':
trainer = UNIT_Trainer(config)
else:
sys.exit("Only support MUNIT|UNIT")
state_dict = torch.load(opts.checkpoint)
trainer.gen_a.load_state_dict(state_dict['a'])
trainer.gen_b.load_state_dict(state_dict['b'])
trainer.cuda()
trainer.eval()
encode = trainer.gen_a.encode if opts.a2b else trainer.gen_b.encode # encode function
style_encode = trainer.gen_b.encode if opts.a2b else trainer.gen_a.encode # encode function
decode = trainer.gen_b.decode if opts.a2b else trainer.gen_a.decode # decode function

transform = transforms.Compose([transforms.Resize(config['new_size']),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
image = Variable(transform(Image.open(opts.input).convert('RGB')).unsqueeze(0).cuda(), volatile=True)
style_image = Variable(transform(Image.open(opts.style).convert('RGB')).unsqueeze(0).cuda(), volatile=True) if opts.style != '' else None
if 'new_size' in config:
new_size = config['new_size']
else:
if opts.a2b==1:
new_size = config['new_size_a']
else:
new_size = config['new_size_b']

transform = transforms.Compose([transforms.Resize(new_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
image = Variable(transform(Image.open(opts.input).convert('RGB')).unsqueeze(0).cuda(), volatile=True)
style_image = Variable(transform(Image.open(opts.style).convert('RGB')).unsqueeze(0).cuda(), volatile=True) if opts.style != '' else None

# Start testing
# Start testing
content, _ = encode(image)

if opts.trainer == 'MUNIT':
style_rand = Variable(torch.randn(opts.num_style, style_dim, 1, 1).cuda(), volatile=True)
content, _ = encode(image)
if opts.style != '':
_, style = style_encode(style_image)
else:
Expand All @@ -68,9 +88,15 @@ def main(argv):
outputs = (outputs + 1) / 2.
path = os.path.join(opts.output_folder, 'output{:03d}.jpg'.format(j))
vutils.save_image(outputs.data, path, padding=0, normalize=True)
if not opts.output_only:
# also save input images
vutils.save_image(image.data, os.path.join(opts.output_folder, 'input.jpg'), padding=0, normalize=True)
elif opts.trainer == 'UNIT':
outputs = decode(content)
outputs = (outputs + 1) / 2.
path = os.path.join(opts.output_folder, 'output.jpg')
vutils.save_image(outputs.data, path, padding=0, normalize=True)
else:
pass

if not opts.output_only:
# also save input images
vutils.save_image(image.data, os.path.join(opts.output_folder, 'input.jpg'), padding=0, normalize=True)

if __name__ == '__main__':
main(sys.argv)

0 comments on commit 0f628ed

Please sign in to comment.