Skip to content

Commit

Permalink
Unify the paths through is_useful
Browse files Browse the repository at this point in the history
  • Loading branch information
Nadrieril committed Oct 27, 2020
1 parent c96bd28 commit 54fa702
Showing 1 changed file with 53 additions and 103 deletions.
156 changes: 53 additions & 103 deletions compiler/rustc_mir_build/src/thir/pattern/_match.rs
Original file line number Diff line number Diff line change
Expand Up @@ -181,7 +181,6 @@
//! we ignore all the patterns in the first column of `P` that involve other constructors.
//! This is where `S(c, P)` comes in:
//! `U(P, p) := U(S(c, P), S(c, p))`
//! This special case is handled in `is_useful_specialized`.
//!
//! For example, if `P` is:
//!
Expand Down Expand Up @@ -1116,8 +1115,8 @@ impl<'tcx> Constructor<'tcx> {
}
}

/// Some constructors (namely IntRange and Slice) actually stand for a set of actual
/// constructors (integers and fixed-sized slices). When specializing for these
/// Some constructors (namely Wildcard, IntRange and Slice) actually stand for a set of actual
/// constructors (like variants, integers or fixed-sized slices). When specializing for these
/// constructors, we want to be specialising for the actual underlying constructors.
/// Naively, we would simply return the list of constructors they correspond to. We instead are
/// more clever: if there are constructors that we know will behave the same wrt the current
Expand All @@ -1136,6 +1135,7 @@ impl<'tcx> Constructor<'tcx> {
debug!("Constructor::split({:#?}, {:#?})", self, pcx.matrix);

match self {
Wildcard => Constructor::split_wildcard(pcx),
// Fast-track if the range is trivial. In particular, we don't do the overlapping
// ranges check.
IntRange(ctor_range)
Expand All @@ -1149,6 +1149,30 @@ impl<'tcx> Constructor<'tcx> {
}
}

/// For wildcards, there are two groups of constructors: there are the constructors actually
/// present in the matrix (`head_ctors`), and the constructors not present (`missing_ctors`).
/// Two constructors that are not in the matrix will either both be catched (by a wildcard), or
/// both not be catched. Therefore we can keep the missing constructors grouped together.
fn split_wildcard<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> SmallVec<[Self; 1]> {
// Missing constructors are those that are not matched by any non-wildcard patterns in the
// current column. We only fully construct them on-demand, because they're rarely used and
// can be big.
let missing_ctors = MissingConstructors::new(pcx);

if missing_ctors.is_empty() {
// All the constructors are present in the matrix, so we just go through them all.
// We must also split them first.
// Since `all_ctors` never contains wildcards, this won't recurse more than once.
let (all_ctors, _) = missing_ctors.into_inner();
all_ctors.into_iter().flat_map(|ctor| ctor.split(pcx, None)).collect()
} else {
// Some constructors are missing, thus we can specialize with the wildcard constructor,
// which will stand for those constructors that are missing, and behaves like any of
// them.
smallvec![Wildcard]
}
}

/// Returns whether `self` is covered by `other`, ie whether `self` is a subset of `other`. For
/// the simple cases, this is simply checking for equality. For the "grouped" constructors,
/// this checks for inclusion.
Expand Down Expand Up @@ -1617,8 +1641,8 @@ impl<'tcx> Usefulness<'tcx> {
match self {
UsefulWithWitness(witnesses) => {
let new_witnesses = if ctor.is_wildcard() {
let missing_ctors = MissingConstructors::new(pcx, is_top_level);
let new_patterns = missing_ctors.report_patterns(pcx);
let missing_ctors = MissingConstructors::new(pcx);
let new_patterns = missing_ctors.report_patterns(pcx, is_top_level);
witnesses
.into_iter()
.flat_map(|witness| {
Expand Down Expand Up @@ -2217,16 +2241,15 @@ impl<'tcx> std::cmp::PartialEq for IntRange<'tcx> {
struct MissingConstructors<'tcx> {
all_ctors: Vec<Constructor<'tcx>>,
used_ctors: Vec<Constructor<'tcx>>,
is_top_level: bool,
}

impl<'tcx> MissingConstructors<'tcx> {
fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>, is_top_level: bool) -> Self {
fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Self {
let used_ctors: Vec<Constructor<'_>> =
pcx.matrix.head_ctors(pcx.cx).cloned().filter(|c| !c.is_wildcard()).collect();
let all_ctors = all_constructors(pcx);

MissingConstructors { all_ctors, used_ctors, is_top_level }
MissingConstructors { all_ctors, used_ctors }
}

fn into_inner(self) -> (Vec<Constructor<'tcx>>, Vec<Constructor<'tcx>>) {
Expand All @@ -2244,7 +2267,11 @@ impl<'tcx> MissingConstructors<'tcx> {

/// List the patterns corresponding to the missing constructors. In some cases, instead of
/// listing all constructors of a given type, we prefer to simply report a wildcard.
fn report_patterns<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>) -> SmallVec<[Pat<'tcx>; 1]> {
fn report_patterns<'p>(
&self,
pcx: PatCtxt<'_, 'p, 'tcx>,
is_top_level: bool,
) -> SmallVec<[Pat<'tcx>; 1]> {
// There are 2 ways we can report a witness here.
// Commonly, we can report all the "free"
// constructors as witnesses, e.g., if we have:
Expand Down Expand Up @@ -2272,7 +2299,7 @@ impl<'tcx> MissingConstructors<'tcx> {
// `used_ctors` is empty.
// The exception is: if we are at the top-level, for example in an empty match, we
// sometimes prefer reporting the list of constructors instead of just `_`.
let report_when_all_missing = self.is_top_level && !IntRange::is_integral(pcx.ty);
let report_when_all_missing = is_top_level && !IntRange::is_integral(pcx.ty);
if self.used_ctors.is_empty() && !report_when_all_missing {
// All constructors are unused. Report only a wildcard
// rather than each individual constructor.
Expand Down Expand Up @@ -2407,103 +2434,26 @@ crate fn is_useful<'p, 'tcx>(

debug!("is_useful_expand_first_col: ty={:#?}, expanding {:#?}", pcx.ty, v.head());

let constructor = v.head_ctor(cx);
let ret = if !constructor.is_wildcard() {
debug!("is_useful - expanding constructor: {:#?}", constructor);
constructor
.split(pcx, Some(hir_id))
.into_iter()
.map(|c| {
is_useful_specialized(
pcx,
v,
&c,
witness_preference,
hir_id,
is_under_guard,
is_top_level,
)
})
.find(|result| result.is_useful())
.unwrap_or(NotUseful)
} else {
debug!("is_useful - expanding wildcard");

// `missing_ctors` is the set of constructors from the same type as the
// first column of `matrix` that are matched only by wildcard patterns
// from the first column.
//
// Therefore, if there is some pattern that is unmatched by `matrix`,
// it will still be unmatched if the first constructor is replaced by
// any of the constructors in `missing_ctors`

// Missing constructors are those that are not matched by any non-wildcard patterns in the
// current column. We only fully construct them on-demand, because they're rarely used and
// can be big.
let missing_ctors = MissingConstructors::new(pcx, is_top_level);

debug!("is_useful_missing_ctors.empty()={:#?}", missing_ctors.is_empty(),);

if missing_ctors.is_empty() {
let (all_ctors, _) = missing_ctors.into_inner();
all_ctors
.into_iter()
.flat_map(|ctor| ctor.split(pcx, None))
.map(|c| {
is_useful_specialized(
pcx,
v,
&c,
witness_preference,
hir_id,
is_under_guard,
is_top_level,
)
})
.find(|result| result.is_useful())
.unwrap_or(NotUseful)
} else {
// Some constructors are missing, thus we can specialize with the wildcard constructor,
// which will stand for those constructors that are missing, and behaves like any of
// them.
is_useful_specialized(
pcx,
v,
constructor,
witness_preference,
hir_id,
is_under_guard,
is_top_level,
)
}
};
let ret = v
.head_ctor(cx)
.split(pcx, Some(hir_id))
.into_iter()
.map(|ctor| {
// We cache the result of `Fields::wildcards` because it is used a lot.
let ctor_wild_subpatterns = Fields::wildcards(pcx, &ctor);
let matrix = pcx.matrix.specialize_constructor(pcx, &ctor, &ctor_wild_subpatterns);
// Unwrap is ok: v can always be specialized with its own constructor.
let v = v.specialize_constructor(pcx, &ctor, &ctor_wild_subpatterns, true).unwrap();
let usefulness =
is_useful(pcx.cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false);
usefulness.apply_constructor(pcx, &ctor, &ctor_wild_subpatterns, is_top_level)
})
.find(|result| result.is_useful())
.unwrap_or(NotUseful);
debug!("is_useful::returns({:#?}, {:#?}) = {:?}", matrix, v, ret);
ret
}

/// A shorthand for the `U(S(c, P), S(c, q))` operation from the paper. I.e., `is_useful` applied
/// to the specialised version of both the pattern matrix `P` and the new pattern `q`.
fn is_useful_specialized<'p, 'tcx>(
pcx: PatCtxt<'_, 'p, 'tcx>,
v: &PatStack<'p, 'tcx>,
ctor: &Constructor<'tcx>,
witness_preference: WitnessPreference,
hir_id: HirId,
is_under_guard: bool,
is_top_level: bool,
) -> Usefulness<'tcx> {
debug!("is_useful_specialized({:#?}, {:#?}, {:?})", v, ctor, pcx.ty);

// We cache the result of `Fields::wildcards` because it is used a lot.
let ctor_wild_subpatterns = Fields::wildcards(pcx, ctor);
let matrix = pcx.matrix.specialize_constructor(pcx, ctor, &ctor_wild_subpatterns);
// Unwrap is ok: v can always be specialized with its own constructor.
let v = v.specialize_constructor(pcx, ctor, &ctor_wild_subpatterns, true).unwrap();
let usefulness =
is_useful(pcx.cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false);
usefulness.apply_constructor(pcx, ctor, &ctor_wild_subpatterns, is_top_level)
}

/// Determines the constructor that the given pattern can be specialized to.
/// Returns `None` in case of a catch-all, which can't be specialized.
fn pat_constructor<'p, 'tcx>(
Expand Down

0 comments on commit 54fa702

Please sign in to comment.