Skip to content

Reconstruction and Compression of Color Images Using Principal Component Analysis (PCA) Algorithm

Notifications You must be signed in to change notification settings

NourozR/Reconstruction-and-Compression-of-Color-Images

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 

Repository files navigation

Reconstruction and Compression of Color Image Using Principal Component Analysis PCA

While reviewing linear algebra, I decided to work on some funny projects that will help me to understand the concepts more deeply. In this repo, I have reconstructed a [600,600,3] RGB image using PCA. To undestand this project, one may need to have solid knowledge of eigendecomposition and covariance matrix. I have another repository where i have included these concepts with python codes, basically using Numpy. Feel free to have a look there!

The input image:

dhoni

with 10 principal components:

screenshot from 2017-06-03 22-09-09

20 Principal Components:

screenshot from 2017-06-03 22-09-53

50 Principal Components:

screenshot from 2017-06-03 22-10-33

100 Principal Components:

screenshot from 2017-06-03 22-11-27

Conclusion:

Using first 100 PCs, a quite good image has been recontructed. Remember our input image had 600 columns, so we had 600 PCs in our eigendecomposition step. So, clearly a great dimension reduction is possible using PCA analysis on any image. Added, in the mean normalising step, you can tune. For example you can use: 0.5 * np.mean(2D_image, axis = 1). It will reduce noise to some extent. Chect it.

I have added two .py files here. One is main fuction to do it and another is my practice file which I did for myself from scratch - but that's too helpful if anyone wants to understand each steps more clearly.

To run the code on ubuntu, save input file "dhoni.jpg" and "image_reconstruction_using_PCA.py" in same directory and run the .py file. However, install all required packages before running the code. You can use this code on any image, with a bit of change, for similar purpose.

Update:

If you are working with rectangular image shapes, just change: axis = None from axis = 0/1. I could change the code and make more generalized but not doing that right now.

About

Reconstruction and Compression of Color Images Using Principal Component Analysis (PCA) Algorithm

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages