-
-
Notifications
You must be signed in to change notification settings - Fork 153
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
63a569f
commit 8f2d67e
Showing
1 changed file
with
88 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
""" | ||
Implements a ReplayStrategy mixin for getting segmenting images via SAM model. | ||
Uses SAM model:https://github.com/facebookresearch/segment-anything | ||
Usage: | ||
class MyReplayStrategy(SAMReplayStrategyMixin): | ||
... | ||
""" | ||
import io | ||
from pprint import pformat | ||
import numpy as np | ||
from segment_anything import SamPredictor, sam_model_registry,SamAutomaticMaskGenerator | ||
import time | ||
from PIL import Image | ||
from loguru import logger | ||
from openadapt.events import get_events | ||
from openadapt.utils import display_event, rows2dicts | ||
from openadapt.models import Recording, Screenshot | ||
from pathlib import Path | ||
import urllib | ||
import numpy as np | ||
import torch | ||
import matplotlib.pyplot as plt | ||
import cv2 | ||
|
||
from openadapt.strategies.base import BaseReplayStrategy | ||
|
||
CHECKPOINT_URL_BASE = "https://dl.fbaipublicfiles.com/segment_anything/" | ||
CHECKPOINT_URL_BY_NAME = { | ||
"default": f"{CHECKPOINT_URL_BASE}sam_vit_h_4b8939.pth", | ||
"vit_l": f"{CHECKPOINT_URL_BASE}sam_vit_l_0b3195.pth", | ||
"vit_b": f"{CHECKPOINT_URL_BASE}sam_vit_b_01ec64.pth", | ||
} | ||
MODEL_NAME = "default" | ||
CHECKPOINT_DIR_PATH = "./checkpoints" | ||
|
||
class SAMReplayStrategyMixin(BaseReplayStrategy): | ||
def __init__( | ||
self, | ||
recording: Recording, | ||
model_name=MODEL_NAME, | ||
checkpoint_dir_path=CHECKPOINT_DIR_PATH, | ||
): | ||
super().__init__(recording) | ||
self.sam_model = self._initialize_model(model_name, checkpoint_dir_path) | ||
self.sam_predictor = SamPredictor(self.sam_model) | ||
self.sam_mask_generator = SamAutomaticMaskGenerator(self.sam_model) | ||
|
||
def _initialize_model(self, model_name, checkpoint_dir_path): | ||
checkpoint_url = CHECKPOINT_URL_BY_NAME[model_name] | ||
checkpoint_file_name = checkpoint_url.split("/")[-1] | ||
checkpoint_file_path = Path(checkpoint_dir_path, checkpoint_file_name) | ||
if not Path.exists(checkpoint_file_path): | ||
Path(checkpoint_dir_path).mkdir(parents=True, exist_ok=True) | ||
logger.info( | ||
f"downloading {checkpoint_url=} to {checkpoint_file_path=}") | ||
urllib.request.urlretrieve(checkpoint_url, checkpoint_file_path) | ||
return sam_model_registry[model_name](checkpoint=checkpoint_file_path) | ||
|
||
def get_autosegmented_screenshot(self, screenshot: Screenshot) -> Screenshot: | ||
masks = self.sam_mask_generator.generate(screenshot.array) | ||
segmented_image = apply_masks(screenshot.image, masks) | ||
|
||
# Create a new Screenshot object with the segmented image | ||
segmented_screenshot = Screenshot() | ||
segmented_screenshot.sct_img = pil_to_sct(segmented_image) | ||
|
||
return segmented_screenshot | ||
|
||
def apply_masks(self, image, masks): | ||
mask_img = np.zeros_like(image) | ||
|
||
for ann in masks: | ||
m = ann['segmentation'] | ||
color_mask = np.random.random(3) | ||
mask_img[m] = color_mask | ||
|
||
segmented_image = Image.fromarray(mask_img) | ||
return segmented_image | ||
|
||
def pil_to_sct(self, image): | ||
img_byte_arr = io.BytesIO() | ||
image.save(img_byte_arr, format='PNG') | ||
img_byte_arr.seek(0) | ||
|
||
return img_byte_arr.getvalue() |