Skip to content

Commit

Permalink
add new API: paddle.cov (#38392)
Browse files Browse the repository at this point in the history
  • Loading branch information
zhiboniu authored Dec 28, 2021
1 parent 706d2c0 commit 85f5d26
Show file tree
Hide file tree
Showing 4 changed files with 403 additions and 0 deletions.
286 changes: 286 additions & 0 deletions python/paddle/fluid/tests/unittests/test_cov.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import unittest
import numpy as np
import six
import paddle


def numpy_cov(np_arr, rowvar=True, ddof=1, fweights=None, aweights=None):
return np.cov(np_arr,
rowvar=rowvar,
ddof=int(ddof),
fweights=fweights,
aweights=aweights)


class Cov_Test(unittest.TestCase):
def setUp(self):
self.shape = [20, 10]
self.weightshape = [10]

def test_tensor_cov_default(self):
typelist = ['float64']
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))

for idx, p in enumerate(places):
if idx == 0:
paddle.set_device('cpu')
else:
paddle.set_device('gpu')

for dtype in typelist:
np_arr = np.random.rand(*self.shape).astype(dtype)
tensor = paddle.to_tensor(np_arr, place=p)
cov = paddle.linalg.cov(tensor,
rowvar=True,
ddof=True,
fweights=None,
aweights=None)
np_cov = numpy_cov(
np_arr, rowvar=True, ddof=1, fweights=None, aweights=None)
self.assertTrue(np.allclose(np_cov, cov.numpy()))

def test_tensor_cov_rowvar(self):
typelist = ['float64']
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))

for idx, p in enumerate(places):
if idx == 0:
paddle.set_device('cpu')
else:
paddle.set_device('gpu')

for dtype in typelist:
np_arr = np.random.rand(*self.shape).astype(dtype)
tensor = paddle.to_tensor(np_arr, place=p)
cov = paddle.linalg.cov(tensor,
rowvar=False,
ddof=True,
fweights=None,
aweights=None)
np_cov = numpy_cov(
np_arr, rowvar=False, ddof=1, fweights=None, aweights=None)
self.assertTrue(np.allclose(np_cov, cov.numpy()))

def test_tensor_cov_ddof(self):
typelist = ['float64']
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))

for idx, p in enumerate(places):
if idx == 0:
paddle.set_device('cpu')
else:
paddle.set_device('gpu')

for dtype in typelist:
np_arr = np.random.rand(*self.shape).astype(dtype)
tensor = paddle.to_tensor(np_arr, place=p)
cov = paddle.linalg.cov(tensor,
rowvar=True,
ddof=False,
fweights=None,
aweights=None)
np_cov = numpy_cov(
np_arr, rowvar=True, ddof=0, fweights=None, aweights=None)
self.assertTrue(np.allclose(np_cov, cov.numpy()))

def test_tensor_cov_fweights(self):
typelist = ['float64']
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))

for idx, p in enumerate(places):
if idx == 0:
paddle.set_device('cpu')
else:
paddle.set_device('gpu')

for dtype in typelist:
np_arr = np.random.rand(*self.shape).astype(dtype)
np_fw = np.random.randint(
10, size=self.weightshape).astype('int32')
tensor = paddle.to_tensor(np_arr, place=p)
fweights = paddle.to_tensor(np_fw, place=p)
cov = paddle.linalg.cov(tensor,
rowvar=True,
ddof=True,
fweights=fweights,
aweights=None)
np_cov = numpy_cov(
np_arr, rowvar=True, ddof=1, fweights=np_fw, aweights=None)
self.assertTrue(np.allclose(np_cov, cov.numpy()))

def test_tensor_cov_aweights(self):
typelist = ['float64']
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))

for idx, p in enumerate(places):
if idx == 0:
paddle.set_device('cpu')
else:
paddle.set_device('gpu')

for dtype in typelist:
np_arr = np.random.rand(*self.shape).astype(dtype)
np_aw = np.random.randint(
10, size=self.weightshape).astype('int32')
tensor = paddle.to_tensor(np_arr, place=p)
aweights = paddle.to_tensor(np_aw, place=p)
cov = paddle.linalg.cov(tensor,
rowvar=True,
ddof=True,
fweights=None,
aweights=aweights)
np_cov = numpy_cov(
np_arr, rowvar=True, ddof=1, fweights=None, aweights=np_aw)
self.assertTrue(np.allclose(np_cov, cov.numpy()))

def test_tensor_cov_weights(self):
typelist = ['float64']
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))

for idx, p in enumerate(places):
if idx == 0:
paddle.set_device('cpu')
else:
paddle.set_device('gpu')

for dtype in typelist:
np_arr = np.random.rand(*self.shape).astype(dtype)
np_fw = np.random.randint(
10, size=self.weightshape).astype('int64')
np_aw = np.random.rand(*self.weightshape).astype('float64')
tensor = paddle.to_tensor(np_arr, place=p)
fweights = paddle.to_tensor(np_fw, place=p)
aweights = paddle.to_tensor(np_aw, place=p)
cov = paddle.linalg.cov(tensor,
rowvar=True,
ddof=True,
fweights=fweights,
aweights=aweights)
np_cov = numpy_cov(
np_arr, rowvar=True, ddof=1, fweights=np_fw, aweights=np_aw)
self.assertTrue(np.allclose(np_cov, cov.numpy()))


class Cov_Test2(Cov_Test):
def setUp(self):
self.shape = [10]
self.weightshape = [10]


# Input(x) only support N-D (1<=N<=2) tensor
class Cov_Test3(unittest.TestCase):
def setUp(self):
self.shape = [2, 5, 10]
self.fweightshape = [10]
self.aweightshape = [10]
self.fw_s = 1.
self.aw_s = 1.

def test_errors(self):
def test_err():
np_arr = np.random.rand(*self.shape).astype('float64')
np_fw = self.fw_s * np.random.rand(
*self.fweightshape).astype('int32')
np_aw = self.aw_s * np.random.rand(
*self.aweightshape).astype('float64')
tensor = paddle.to_tensor(np_arr)
fweights = paddle.to_tensor(np_fw)
aweights = paddle.to_tensor(np_aw)
cov = paddle.linalg.cov(tensor,
rowvar=True,
ddof=True,
fweights=fweights,
aweights=aweights)

self.assertRaises(ValueError, test_err)


#Input(fweights) only support N-D (N<=1) tensor
class Cov_Test4(Cov_Test3):
def setUp(self):
self.shape = [5, 10]
self.fweightshape = [2, 10]
self.aweightshape = [10]
self.fw_s = 1.
self.aw_s = 1.


#The number of Input(fweights) should equal to x's dim[1]
class Cov_Test5(Cov_Test3):
def setUp(self):
self.shape = [5, 10]
self.fweightshape = [5]
self.aweightshape = [10]
self.fw_s = 1.
self.aw_s = 1.


#The value of Input(fweights) cannot be negtive
class Cov_Test6(Cov_Test3):
def setUp(self):
self.shape = [5, 10]
self.fweightshape = [10]
self.aweightshape = [10]
self.fw_s = -1.
self.aw_s = 1.


#Input(aweights) only support N-D (N<=1) tensor
class Cov_Test7(Cov_Test3):
def setUp(self):
self.shape = [5, 10]
self.fweightshape = [10]
self.aweightshape = [2, 10]
self.fw_s = 1.
self.aw_s = 1.


#The number of Input(aweights) should equal to x's dim[1]
class Cov_Test8(Cov_Test3):
def setUp(self):
self.shape = [5, 10]
self.fweightshape = [10]
self.aweightshape = [5]
self.fw_s = 1.
self.aw_s = 1.


#The value of Input(aweights) cannot be negtive
class Cov_Test9(Cov_Test3):
def setUp(self):
self.shape = [5, 10]
self.fweightshape = [10]
self.aweightshape = [10]
self.fw_s = 1.
self.aw_s = -1.


if __name__ == '__main__':
unittest.main()
2 changes: 2 additions & 0 deletions python/paddle/linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from .tensor.linalg import cholesky # noqa: F401
from .tensor.linalg import norm # noqa: F401
from .tensor.linalg import eig # noqa: F401
from .tensor.linalg import cov # noqa: F401
from .tensor.linalg import cond # noqa: F401
from .tensor.linalg import matrix_power # noqa: F401
from .tensor.linalg import solve # noqa: F401
Expand All @@ -36,6 +37,7 @@
'cholesky', #noqa
'norm',
'cond',
'cov',
'inv',
'eig',
'eigvals',
Expand Down
2 changes: 2 additions & 0 deletions python/paddle/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
from .creation import complex # noqa: F401
from .linalg import matmul # noqa: F401
from .linalg import dot # noqa: F401
from .linalg import cov # noqa: F401
from .linalg import norm # noqa: F401
from .linalg import cond # noqa: F401
from .linalg import transpose # noqa: F401
Expand Down Expand Up @@ -263,6 +264,7 @@
tensor_method_func = [ #noqa
'matmul',
'dot',
'cov',
'norm',
'cond',
'transpose',
Expand Down
Loading

0 comments on commit 85f5d26

Please sign in to comment.