-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
403 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,286 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import paddle.fluid as fluid | ||
import unittest | ||
import numpy as np | ||
import six | ||
import paddle | ||
|
||
|
||
def numpy_cov(np_arr, rowvar=True, ddof=1, fweights=None, aweights=None): | ||
return np.cov(np_arr, | ||
rowvar=rowvar, | ||
ddof=int(ddof), | ||
fweights=fweights, | ||
aweights=aweights) | ||
|
||
|
||
class Cov_Test(unittest.TestCase): | ||
def setUp(self): | ||
self.shape = [20, 10] | ||
self.weightshape = [10] | ||
|
||
def test_tensor_cov_default(self): | ||
typelist = ['float64'] | ||
places = [fluid.CPUPlace()] | ||
if fluid.core.is_compiled_with_cuda(): | ||
places.append(fluid.CUDAPlace(0)) | ||
|
||
for idx, p in enumerate(places): | ||
if idx == 0: | ||
paddle.set_device('cpu') | ||
else: | ||
paddle.set_device('gpu') | ||
|
||
for dtype in typelist: | ||
np_arr = np.random.rand(*self.shape).astype(dtype) | ||
tensor = paddle.to_tensor(np_arr, place=p) | ||
cov = paddle.linalg.cov(tensor, | ||
rowvar=True, | ||
ddof=True, | ||
fweights=None, | ||
aweights=None) | ||
np_cov = numpy_cov( | ||
np_arr, rowvar=True, ddof=1, fweights=None, aweights=None) | ||
self.assertTrue(np.allclose(np_cov, cov.numpy())) | ||
|
||
def test_tensor_cov_rowvar(self): | ||
typelist = ['float64'] | ||
places = [fluid.CPUPlace()] | ||
if fluid.core.is_compiled_with_cuda(): | ||
places.append(fluid.CUDAPlace(0)) | ||
|
||
for idx, p in enumerate(places): | ||
if idx == 0: | ||
paddle.set_device('cpu') | ||
else: | ||
paddle.set_device('gpu') | ||
|
||
for dtype in typelist: | ||
np_arr = np.random.rand(*self.shape).astype(dtype) | ||
tensor = paddle.to_tensor(np_arr, place=p) | ||
cov = paddle.linalg.cov(tensor, | ||
rowvar=False, | ||
ddof=True, | ||
fweights=None, | ||
aweights=None) | ||
np_cov = numpy_cov( | ||
np_arr, rowvar=False, ddof=1, fweights=None, aweights=None) | ||
self.assertTrue(np.allclose(np_cov, cov.numpy())) | ||
|
||
def test_tensor_cov_ddof(self): | ||
typelist = ['float64'] | ||
places = [fluid.CPUPlace()] | ||
if fluid.core.is_compiled_with_cuda(): | ||
places.append(fluid.CUDAPlace(0)) | ||
|
||
for idx, p in enumerate(places): | ||
if idx == 0: | ||
paddle.set_device('cpu') | ||
else: | ||
paddle.set_device('gpu') | ||
|
||
for dtype in typelist: | ||
np_arr = np.random.rand(*self.shape).astype(dtype) | ||
tensor = paddle.to_tensor(np_arr, place=p) | ||
cov = paddle.linalg.cov(tensor, | ||
rowvar=True, | ||
ddof=False, | ||
fweights=None, | ||
aweights=None) | ||
np_cov = numpy_cov( | ||
np_arr, rowvar=True, ddof=0, fweights=None, aweights=None) | ||
self.assertTrue(np.allclose(np_cov, cov.numpy())) | ||
|
||
def test_tensor_cov_fweights(self): | ||
typelist = ['float64'] | ||
places = [fluid.CPUPlace()] | ||
if fluid.core.is_compiled_with_cuda(): | ||
places.append(fluid.CUDAPlace(0)) | ||
|
||
for idx, p in enumerate(places): | ||
if idx == 0: | ||
paddle.set_device('cpu') | ||
else: | ||
paddle.set_device('gpu') | ||
|
||
for dtype in typelist: | ||
np_arr = np.random.rand(*self.shape).astype(dtype) | ||
np_fw = np.random.randint( | ||
10, size=self.weightshape).astype('int32') | ||
tensor = paddle.to_tensor(np_arr, place=p) | ||
fweights = paddle.to_tensor(np_fw, place=p) | ||
cov = paddle.linalg.cov(tensor, | ||
rowvar=True, | ||
ddof=True, | ||
fweights=fweights, | ||
aweights=None) | ||
np_cov = numpy_cov( | ||
np_arr, rowvar=True, ddof=1, fweights=np_fw, aweights=None) | ||
self.assertTrue(np.allclose(np_cov, cov.numpy())) | ||
|
||
def test_tensor_cov_aweights(self): | ||
typelist = ['float64'] | ||
places = [fluid.CPUPlace()] | ||
if fluid.core.is_compiled_with_cuda(): | ||
places.append(fluid.CUDAPlace(0)) | ||
|
||
for idx, p in enumerate(places): | ||
if idx == 0: | ||
paddle.set_device('cpu') | ||
else: | ||
paddle.set_device('gpu') | ||
|
||
for dtype in typelist: | ||
np_arr = np.random.rand(*self.shape).astype(dtype) | ||
np_aw = np.random.randint( | ||
10, size=self.weightshape).astype('int32') | ||
tensor = paddle.to_tensor(np_arr, place=p) | ||
aweights = paddle.to_tensor(np_aw, place=p) | ||
cov = paddle.linalg.cov(tensor, | ||
rowvar=True, | ||
ddof=True, | ||
fweights=None, | ||
aweights=aweights) | ||
np_cov = numpy_cov( | ||
np_arr, rowvar=True, ddof=1, fweights=None, aweights=np_aw) | ||
self.assertTrue(np.allclose(np_cov, cov.numpy())) | ||
|
||
def test_tensor_cov_weights(self): | ||
typelist = ['float64'] | ||
places = [fluid.CPUPlace()] | ||
if fluid.core.is_compiled_with_cuda(): | ||
places.append(fluid.CUDAPlace(0)) | ||
|
||
for idx, p in enumerate(places): | ||
if idx == 0: | ||
paddle.set_device('cpu') | ||
else: | ||
paddle.set_device('gpu') | ||
|
||
for dtype in typelist: | ||
np_arr = np.random.rand(*self.shape).astype(dtype) | ||
np_fw = np.random.randint( | ||
10, size=self.weightshape).astype('int64') | ||
np_aw = np.random.rand(*self.weightshape).astype('float64') | ||
tensor = paddle.to_tensor(np_arr, place=p) | ||
fweights = paddle.to_tensor(np_fw, place=p) | ||
aweights = paddle.to_tensor(np_aw, place=p) | ||
cov = paddle.linalg.cov(tensor, | ||
rowvar=True, | ||
ddof=True, | ||
fweights=fweights, | ||
aweights=aweights) | ||
np_cov = numpy_cov( | ||
np_arr, rowvar=True, ddof=1, fweights=np_fw, aweights=np_aw) | ||
self.assertTrue(np.allclose(np_cov, cov.numpy())) | ||
|
||
|
||
class Cov_Test2(Cov_Test): | ||
def setUp(self): | ||
self.shape = [10] | ||
self.weightshape = [10] | ||
|
||
|
||
# Input(x) only support N-D (1<=N<=2) tensor | ||
class Cov_Test3(unittest.TestCase): | ||
def setUp(self): | ||
self.shape = [2, 5, 10] | ||
self.fweightshape = [10] | ||
self.aweightshape = [10] | ||
self.fw_s = 1. | ||
self.aw_s = 1. | ||
|
||
def test_errors(self): | ||
def test_err(): | ||
np_arr = np.random.rand(*self.shape).astype('float64') | ||
np_fw = self.fw_s * np.random.rand( | ||
*self.fweightshape).astype('int32') | ||
np_aw = self.aw_s * np.random.rand( | ||
*self.aweightshape).astype('float64') | ||
tensor = paddle.to_tensor(np_arr) | ||
fweights = paddle.to_tensor(np_fw) | ||
aweights = paddle.to_tensor(np_aw) | ||
cov = paddle.linalg.cov(tensor, | ||
rowvar=True, | ||
ddof=True, | ||
fweights=fweights, | ||
aweights=aweights) | ||
|
||
self.assertRaises(ValueError, test_err) | ||
|
||
|
||
#Input(fweights) only support N-D (N<=1) tensor | ||
class Cov_Test4(Cov_Test3): | ||
def setUp(self): | ||
self.shape = [5, 10] | ||
self.fweightshape = [2, 10] | ||
self.aweightshape = [10] | ||
self.fw_s = 1. | ||
self.aw_s = 1. | ||
|
||
|
||
#The number of Input(fweights) should equal to x's dim[1] | ||
class Cov_Test5(Cov_Test3): | ||
def setUp(self): | ||
self.shape = [5, 10] | ||
self.fweightshape = [5] | ||
self.aweightshape = [10] | ||
self.fw_s = 1. | ||
self.aw_s = 1. | ||
|
||
|
||
#The value of Input(fweights) cannot be negtive | ||
class Cov_Test6(Cov_Test3): | ||
def setUp(self): | ||
self.shape = [5, 10] | ||
self.fweightshape = [10] | ||
self.aweightshape = [10] | ||
self.fw_s = -1. | ||
self.aw_s = 1. | ||
|
||
|
||
#Input(aweights) only support N-D (N<=1) tensor | ||
class Cov_Test7(Cov_Test3): | ||
def setUp(self): | ||
self.shape = [5, 10] | ||
self.fweightshape = [10] | ||
self.aweightshape = [2, 10] | ||
self.fw_s = 1. | ||
self.aw_s = 1. | ||
|
||
|
||
#The number of Input(aweights) should equal to x's dim[1] | ||
class Cov_Test8(Cov_Test3): | ||
def setUp(self): | ||
self.shape = [5, 10] | ||
self.fweightshape = [10] | ||
self.aweightshape = [5] | ||
self.fw_s = 1. | ||
self.aw_s = 1. | ||
|
||
|
||
#The value of Input(aweights) cannot be negtive | ||
class Cov_Test9(Cov_Test3): | ||
def setUp(self): | ||
self.shape = [5, 10] | ||
self.fweightshape = [10] | ||
self.aweightshape = [10] | ||
self.fw_s = 1. | ||
self.aw_s = -1. | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.