Skip to content

Commit

Permalink
reshape fill_constant
Browse files Browse the repository at this point in the history
  • Loading branch information
zhoutianzi666 committed Jul 14, 2022
1 parent 988abd6 commit 95010e8
Show file tree
Hide file tree
Showing 7 changed files with 552 additions and 84 deletions.
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2089,6 +2089,7 @@ USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
USE_TRT_CONVERTER(fill_constant)
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
Expand Down
3 changes: 2 additions & 1 deletion paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,8 @@ list(
c_allreduce_op.cc
top_k_op.cc
squeeze2_op.cc
unsqueeze2_op.cc)
unsqueeze2_op.cc
fill_constant_op.cc)

if(CUSPARSELT_FOUND AND ${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 8)
list(APPEND CONVERT_FILES sparse_fc_op.cc sparse_multihead_matmul_op.cc)
Expand Down
71 changes: 71 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/fill_constant_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class FillConstantOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4)
<< "convert a fluid fill_constant op to tensorrt fill_constant layer";

framework::OpDesc op_desc(op, nullptr);
int dtype = BOOST_GET_CONST(int, op_desc.GetAttr("dtype"));
std::string str_value =
BOOST_GET_CONST(std::string, op_desc.GetAttr("str_value"));
std::vector<int64_t> shape =
BOOST_GET_CONST(std::vector<int64_t>, op_desc.GetAttr("shape"));
std::unique_ptr<framework::Tensor> out_tensor(new framework::Tensor());
out_tensor->Resize(phi::make_ddim(shape));
nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
void* trt_data = nullptr;
size_t trt_num;
if (dtype == 2 || dtype == 3) { // int, int64
auto* tmp_ptr = out_tensor->mutable_data<int>(platform::CPUPlace());
for (int64_t i = 0; i < out_tensor->numel(); i++)
tmp_ptr[i] = std::stoi(str_value);
trt_dtype = nvinfer1::DataType::kINT32;
trt_data = static_cast<void*>(tmp_ptr);
} else if (dtype == 5) { // float
auto* tmp_ptr = out_tensor->mutable_data<float>(platform::CPUPlace());
for (int64_t i = 0; i < out_tensor->numel(); i++)
tmp_ptr[i] = std::stof(str_value);
trt_data = static_cast<void*>(tmp_ptr);
} else {
}
trt_num = static_cast<size_t>(out_tensor->numel());
engine_->SetWeights("fill_constant_value", std::move(out_tensor));
TensorRTEngine::Weight weight{trt_dtype, trt_data, trt_num};

nvinfer1::Dims trt_in_shape;
trt_in_shape.nbDims = shape.size();
for (size_t i = 0; i < shape.size(); i++) trt_in_shape.d[i] = shape[i];
nvinfer1::ILayer* layer =
TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_in_shape, weight.get());
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "fill_constant", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(fill_constant, FillConstantOpConverter);
28 changes: 23 additions & 5 deletions paddle/fluid/inference/tensorrt/convert/reshape_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -35,14 +35,29 @@ class ReshapeOpConverter : public OpConverter {
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);

std::vector<int> shape =
BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("shape"));
int nbDims_num = shape.size();
nvinfer1::Dims reshape_dim;
if (engine_->with_dynamic_shape()) { // running the TRT Dynamic Shape mode
reshape_dim.nbDims = nbDims_num;
for (int i = 0; i < nbDims_num; ++i) {
reshape_dim.d[i] = shape[i];
nvinfer1::ITensor* real_shape_tensor = nullptr;
std::vector<nvinfer1::ITensor*> concat_inputs;
bool one_input = false;
if (engine_->with_dynamic_shape()) {
if (op_desc.Inputs().find("ShapeTensor") != op_desc.Inputs().end() &&
op_desc.Input("ShapeTensor").size() > 0) {
for (auto name : op_desc.Input("ShapeTensor"))
concat_inputs.push_back(engine_->GetITensor(name));
real_shape_tensor = Concat(concat_inputs);
} else if (op_desc.Inputs().find("Shape") != op_desc.Inputs().end() &&
op_desc.Input("Shape").size() > 0) {
real_shape_tensor = engine_->GetITensor(op_desc.Input("Shape")[0]);
} else {
reshape_dim.nbDims = nbDims_num;
for (int i = 0; i < nbDims_num; ++i) {
reshape_dim.d[i] = shape[i];
}
one_input = true;
}
} else { // running the TRT Static Shape mode
reshape_dim.nbDims = nbDims_num - 1;
Expand All @@ -51,7 +66,10 @@ class ReshapeOpConverter : public OpConverter {
}
}
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
layer->setReshapeDimensions(reshape_dim);
if (!engine_->with_dynamic_shape() || one_input)
layer->setReshapeDimensions(reshape_dim);
else
layer->setInput(1, *real_shape_tensor);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "reshape", {output_name}, test_mode);
}
Expand Down
26 changes: 26 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"transformer_input_convert",
"recover_padding",
"remove_padding",
"fill_constant",
"squeeze2",
"unsqueeze2"};
std::unordered_set<std::string> teller_set{
Expand Down Expand Up @@ -274,6 +275,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"transformer_input_convert",
"recover_padding",
"remove_padding",
"fill_constant",
"squeeze2",
"unsqueeze2"};
};
Expand Down Expand Up @@ -1447,6 +1449,27 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}
}

if (op_type == "fill_constant") {
auto fill_constant_inputs = desc.Inputs();
if (fill_constant_inputs.find("ValueTensor") !=
fill_constant_inputs.end()) {
if (desc.Input("ValueTensor").size()) return false;
}
if (fill_constant_inputs.find("ShapeTensor") !=
fill_constant_inputs.end()) {
if (desc.Input("ShapeTensor").size()) return false;
}
if (fill_constant_inputs.find("ShapeTensorList") !=
fill_constant_inputs.end()) {
if (desc.Input("ShapeTensorList").size()) return false;
}
int dtype = BOOST_GET_CONST(int, desc.GetAttr("dtype"));
// only support int32, int64, float32
if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
return false;
}
}

if (op_type == "instance_norm") {
if (with_dynamic_shape) {
VLOG(3) << "trt instance_norm op does not support dynamic shape ";
Expand Down Expand Up @@ -1800,6 +1823,9 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}

if (op_type == "reshape" || op_type == "reshape2") {
if (with_dynamic_shape) {
return true;
}
if (!desc.HasAttr("shape")) {
return false;
}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import unittest
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertSplitTest(TrtLayerAutoScanTest):

def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):

def generate_value_data(attrs: List[Dict[str, Any]]):
return np.array([1]).astype(np.int32)

def generate_shape_data(attrs: List[Dict[str, Any]]):
return np.array([4, 23]).astype(np.int32)

def generate_shapelist_data(attrs: List[Dict[str, Any]]):
return np.array([4]).astype(np.int32)

for shape in [[2, 3, 4]]:
for num_input in [0, 1, 2, 3]:
for dtype in [5, 2, 3]:
for str_value in ["2", "23", "-1"]:
self.num_input = num_input
dics = [{
"str_value": str_value,
"shape": shape,
"dtype": dtype
}, {
"axis": -1
}]
dics_intput = [{
"ValueTensor": ["value_data"]
}, {
"ShapeTensor": ["shape_data"],
}, {
"ShapeTensorList": ["shapeT1_data", "shapeT2_data"],
}, {}]
ops_config = [
{
"op_type": "fill_constant",
"op_inputs": dics_intput[num_input],
"op_outputs": {
"Out": ["out_data"],
},
"op_attrs": dics[0]
},
]

def generate_input():
return np.random.random([1, 1]).astype(np.float32)

ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"value_data":
TensorConfig(data_gen=partial(
generate_value_data, dics)),
"shape_data":
TensorConfig(data_gen=partial(
generate_shape_data, dics)),
"shapeT1_data":
TensorConfig(data_gen=partial(
generate_shapelist_data, dics)),
"shapeT2_data":
TensorConfig(data_gen=partial(
generate_shapelist_data, dics)),
},
outputs=["out_data"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):

def generate_dynamic_shape(attrs):
self.input_shape = [1, 1]
max_shape = list(self.input_shape)
min_shape = list(self.input_shape)
opt_shape = list(self.input_shape)
for i in range(len(self.input_shape)):
max_shape[i] = max_shape[i] + 1
self.dynamic_shape.min_input_shape = {"Y_data": min_shape}
self.dynamic_shape.max_input_shape = {"Y_data": max_shape}
self.dynamic_shape.opt_input_shape = {"Y_data": opt_shape}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if (self.num_input < 3):
return 0, 6
return 1, 5

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# Don't test static shape

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5

def add_skip_trt_case(self):
pass

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()
Loading

0 comments on commit 95010e8

Please sign in to comment.