-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
988abd6
commit 95010e8
Showing
7 changed files
with
552 additions
and
84 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
71 changes: 71 additions & 0 deletions
71
paddle/fluid/inference/tensorrt/convert/fill_constant_op.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" | ||
|
||
namespace paddle { | ||
namespace inference { | ||
namespace tensorrt { | ||
|
||
class FillConstantOpConverter : public OpConverter { | ||
public: | ||
void operator()(const framework::proto::OpDesc& op, | ||
const framework::Scope& scope, | ||
bool test_mode) override { | ||
VLOG(4) | ||
<< "convert a fluid fill_constant op to tensorrt fill_constant layer"; | ||
|
||
framework::OpDesc op_desc(op, nullptr); | ||
int dtype = BOOST_GET_CONST(int, op_desc.GetAttr("dtype")); | ||
std::string str_value = | ||
BOOST_GET_CONST(std::string, op_desc.GetAttr("str_value")); | ||
std::vector<int64_t> shape = | ||
BOOST_GET_CONST(std::vector<int64_t>, op_desc.GetAttr("shape")); | ||
std::unique_ptr<framework::Tensor> out_tensor(new framework::Tensor()); | ||
out_tensor->Resize(phi::make_ddim(shape)); | ||
nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT; | ||
void* trt_data = nullptr; | ||
size_t trt_num; | ||
if (dtype == 2 || dtype == 3) { // int, int64 | ||
auto* tmp_ptr = out_tensor->mutable_data<int>(platform::CPUPlace()); | ||
for (int64_t i = 0; i < out_tensor->numel(); i++) | ||
tmp_ptr[i] = std::stoi(str_value); | ||
trt_dtype = nvinfer1::DataType::kINT32; | ||
trt_data = static_cast<void*>(tmp_ptr); | ||
} else if (dtype == 5) { // float | ||
auto* tmp_ptr = out_tensor->mutable_data<float>(platform::CPUPlace()); | ||
for (int64_t i = 0; i < out_tensor->numel(); i++) | ||
tmp_ptr[i] = std::stof(str_value); | ||
trt_data = static_cast<void*>(tmp_ptr); | ||
} else { | ||
} | ||
trt_num = static_cast<size_t>(out_tensor->numel()); | ||
engine_->SetWeights("fill_constant_value", std::move(out_tensor)); | ||
TensorRTEngine::Weight weight{trt_dtype, trt_data, trt_num}; | ||
|
||
nvinfer1::Dims trt_in_shape; | ||
trt_in_shape.nbDims = shape.size(); | ||
for (size_t i = 0; i < shape.size(); i++) trt_in_shape.d[i] = shape[i]; | ||
nvinfer1::ILayer* layer = | ||
TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_in_shape, weight.get()); | ||
auto output_name = op_desc.Output("Out")[0]; | ||
RreplenishLayerAndOutput(layer, "fill_constant", {output_name}, test_mode); | ||
} | ||
}; | ||
|
||
} // namespace tensorrt | ||
} // namespace inference | ||
} // namespace paddle | ||
|
||
REGISTER_TRT_OP_CONVERTER(fill_constant, FillConstantOpConverter); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
142 changes: 142 additions & 0 deletions
142
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_fill_constant.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons | ||
from program_config import TensorConfig, ProgramConfig | ||
import unittest | ||
import numpy as np | ||
import paddle.inference as paddle_infer | ||
from functools import partial | ||
from typing import Optional, List, Callable, Dict, Any, Set | ||
|
||
|
||
class TrtConvertSplitTest(TrtLayerAutoScanTest): | ||
|
||
def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
return True | ||
|
||
def sample_program_configs(self): | ||
|
||
def generate_value_data(attrs: List[Dict[str, Any]]): | ||
return np.array([1]).astype(np.int32) | ||
|
||
def generate_shape_data(attrs: List[Dict[str, Any]]): | ||
return np.array([4, 23]).astype(np.int32) | ||
|
||
def generate_shapelist_data(attrs: List[Dict[str, Any]]): | ||
return np.array([4]).astype(np.int32) | ||
|
||
for shape in [[2, 3, 4]]: | ||
for num_input in [0, 1, 2, 3]: | ||
for dtype in [5, 2, 3]: | ||
for str_value in ["2", "23", "-1"]: | ||
self.num_input = num_input | ||
dics = [{ | ||
"str_value": str_value, | ||
"shape": shape, | ||
"dtype": dtype | ||
}, { | ||
"axis": -1 | ||
}] | ||
dics_intput = [{ | ||
"ValueTensor": ["value_data"] | ||
}, { | ||
"ShapeTensor": ["shape_data"], | ||
}, { | ||
"ShapeTensorList": ["shapeT1_data", "shapeT2_data"], | ||
}, {}] | ||
ops_config = [ | ||
{ | ||
"op_type": "fill_constant", | ||
"op_inputs": dics_intput[num_input], | ||
"op_outputs": { | ||
"Out": ["out_data"], | ||
}, | ||
"op_attrs": dics[0] | ||
}, | ||
] | ||
|
||
def generate_input(): | ||
return np.random.random([1, 1]).astype(np.float32) | ||
|
||
ops = self.generate_op_config(ops_config) | ||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights={}, | ||
inputs={ | ||
"value_data": | ||
TensorConfig(data_gen=partial( | ||
generate_value_data, dics)), | ||
"shape_data": | ||
TensorConfig(data_gen=partial( | ||
generate_shape_data, dics)), | ||
"shapeT1_data": | ||
TensorConfig(data_gen=partial( | ||
generate_shapelist_data, dics)), | ||
"shapeT2_data": | ||
TensorConfig(data_gen=partial( | ||
generate_shapelist_data, dics)), | ||
}, | ||
outputs=["out_data"]) | ||
|
||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config) -> (paddle_infer.Config, List[int], float): | ||
|
||
def generate_dynamic_shape(attrs): | ||
self.input_shape = [1, 1] | ||
max_shape = list(self.input_shape) | ||
min_shape = list(self.input_shape) | ||
opt_shape = list(self.input_shape) | ||
for i in range(len(self.input_shape)): | ||
max_shape[i] = max_shape[i] + 1 | ||
self.dynamic_shape.min_input_shape = {"Y_data": min_shape} | ||
self.dynamic_shape.max_input_shape = {"Y_data": max_shape} | ||
self.dynamic_shape.opt_input_shape = {"Y_data": opt_shape} | ||
|
||
def clear_dynamic_shape(): | ||
self.dynamic_shape.min_input_shape = {} | ||
self.dynamic_shape.max_input_shape = {} | ||
self.dynamic_shape.opt_input_shape = {} | ||
|
||
def generate_trt_nodes_num(attrs, dynamic_shape): | ||
if (self.num_input < 3): | ||
return 0, 6 | ||
return 1, 5 | ||
|
||
attrs = [ | ||
program_config.ops[i].attrs for i in range(len(program_config.ops)) | ||
] | ||
# Don't test static shape | ||
|
||
# for dynamic_shape | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True), 1e-5 | ||
|
||
def add_skip_trt_case(self): | ||
pass | ||
|
||
def test(self): | ||
self.add_skip_trt_case() | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
Oops, something went wrong.