-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【Hackathon No.21】为 Paddle 新增 SoftMarginLoss (#42364)
* 2022-04-28 * 2022-04-28_V2 * 2022-04-30 * 2022-04-30_V2 * 2022-05-01 * 2022-05-02 * 2022-05-02_V2 * 2022-05-05_V1 * 2022-05-06_V1 * 2022-05-07_V1 * Update loss.py * 2022-05-07_V2 * 2022-05-13_V1 * Update test_soft_margin_loss.py * Update loss.py * Update loss.py * 2022-05-16_V1 * 2022-05-19_V1 * 2022-05-20_V1 * Update test_soft_margin_loss.py * 2022-06-01_V1 * 2022-06-05 * 2022-06-07 * 2022-06-07 * 2022-06-08 * 2022-06-08_V2 * 2022-06-17-code_style * Modify python * 2022-06-20 * for * for CI;test=document_fix Co-authored-by: Ligoml <[email protected]>
- Loading branch information
1 parent
243acdb
commit f9cd526
Showing
6 changed files
with
332 additions
and
0 deletions.
There are no files selected for viewing
177 changes: 177 additions & 0 deletions
177
python/paddle/fluid/tests/unittests/test_soft_margin_loss.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import paddle | ||
import numpy as np | ||
import unittest | ||
|
||
|
||
def test_static_layer( | ||
place, | ||
input_np, | ||
label_np, | ||
reduction='mean', | ||
): | ||
paddle.enable_static() | ||
prog = paddle.static.Program() | ||
startup_prog = paddle.static.Program() | ||
with paddle.static.program_guard(prog, startup_prog): | ||
input = paddle.static.data(name='input', | ||
shape=input_np.shape, | ||
dtype=input_np.dtype) | ||
label = paddle.static.data(name='label', | ||
shape=label_np.shape, | ||
dtype=label_np.dtype) | ||
sm_loss = paddle.nn.loss.SoftMarginLoss(reduction=reduction) | ||
res = sm_loss(input, label) | ||
exe = paddle.static.Executor(place) | ||
static_result = exe.run(prog, | ||
feed={ | ||
"input": input_np, | ||
"label": label_np | ||
}, | ||
fetch_list=[res]) | ||
return static_result | ||
|
||
|
||
def test_static_functional( | ||
place, | ||
input_np, | ||
label_np, | ||
reduction='mean', | ||
): | ||
paddle.enable_static() | ||
prog = paddle.static.Program() | ||
startup_prog = paddle.static.Program() | ||
with paddle.static.program_guard(prog, startup_prog): | ||
input = paddle.static.data(name='input', | ||
shape=input_np.shape, | ||
dtype=input_np.dtype) | ||
label = paddle.static.data(name='label', | ||
shape=label_np.shape, | ||
dtype=label_np.dtype) | ||
|
||
res = paddle.nn.functional.soft_margin_loss(input, | ||
label, | ||
reduction=reduction) | ||
exe = paddle.static.Executor(place) | ||
static_result = exe.run(prog, | ||
feed={ | ||
"input": input_np, | ||
"label": label_np | ||
}, | ||
fetch_list=[res]) | ||
return static_result | ||
|
||
|
||
def test_dygraph_layer( | ||
place, | ||
input_np, | ||
label_np, | ||
reduction='mean', | ||
): | ||
paddle.disable_static() | ||
sm_loss = paddle.nn.loss.SoftMarginLoss(reduction=reduction) | ||
dy_res = sm_loss(paddle.to_tensor(input_np), paddle.to_tensor(label_np)) | ||
dy_result = dy_res.numpy() | ||
paddle.enable_static() | ||
return dy_result | ||
|
||
|
||
def test_dygraph_functional( | ||
place, | ||
input_np, | ||
label_np, | ||
reduction='mean', | ||
): | ||
paddle.disable_static() | ||
input = paddle.to_tensor(input_np) | ||
label = paddle.to_tensor(label_np) | ||
|
||
dy_res = paddle.nn.functional.soft_margin_loss(input, | ||
label, | ||
reduction=reduction) | ||
dy_result = dy_res.numpy() | ||
paddle.enable_static() | ||
return dy_result | ||
|
||
|
||
def calc_softmarginloss( | ||
input_np, | ||
label_np, | ||
reduction='mean', | ||
): | ||
expected = np.log(1 + np.exp(-label_np * input_np)) | ||
# expected = np.mean(expected, axis=-1) | ||
|
||
if reduction == 'mean': | ||
expected = np.mean(expected) | ||
elif reduction == 'sum': | ||
expected = np.sum(expected) | ||
else: | ||
expected = expected | ||
|
||
return expected | ||
|
||
|
||
class TestSoftMarginLoss(unittest.TestCase): | ||
|
||
def test_SoftMarginLoss(self): | ||
input_np = np.random.uniform(0.1, 0.8, size=(5, 5)).astype(np.float64) | ||
types = [np.int32, np.int64, np.float32, np.float64] | ||
places = ['cpu'] | ||
if paddle.device.is_compiled_with_cuda(): | ||
places.append('gpu') | ||
reductions = ['sum', 'mean', 'none'] | ||
for place in places: | ||
for reduction in reductions: | ||
for _type in types: | ||
label_np = np.random.randint(0, 2, | ||
size=(5, 5)).astype(_type) | ||
label_np[label_np == 0] = -1 | ||
static_result = test_static_layer(place, input_np, label_np, | ||
reduction) | ||
dy_result = test_dygraph_layer(place, input_np, label_np, | ||
reduction) | ||
expected = calc_softmarginloss(input_np, label_np, | ||
reduction) | ||
self.assertTrue(np.allclose(static_result, expected)) | ||
self.assertTrue(np.allclose(static_result, dy_result)) | ||
self.assertTrue(np.allclose(dy_result, expected)) | ||
static_functional = test_static_functional( | ||
place, input_np, label_np, reduction) | ||
dy_functional = test_dygraph_functional( | ||
place, input_np, label_np, reduction) | ||
self.assertTrue(np.allclose(static_functional, expected)) | ||
self.assertTrue( | ||
np.allclose(static_functional, dy_functional)) | ||
self.assertTrue(np.allclose(dy_functional, expected)) | ||
|
||
def test_SoftMarginLoss_error(self): | ||
paddle.disable_static() | ||
self.assertRaises(ValueError, | ||
paddle.nn.loss.SoftMarginLoss, | ||
reduction="unsupport reduction") | ||
input = paddle.to_tensor([[0.1, 0.3]], dtype='float32') | ||
label = paddle.to_tensor([[-1.0, 1.0]], dtype='float32') | ||
self.assertRaises(ValueError, | ||
paddle.nn.functional.soft_margin_loss, | ||
input=input, | ||
label=label, | ||
reduction="unsupport reduction") | ||
paddle.enable_static() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters