Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PaddlePaddle Hackathon 2】15 新增 API Nanmedian #42385

Merged
merged 31 commits into from
May 30, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
9fe3ee7
nanmedian op
thunder95 Apr 28, 2022
00f901c
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 Apr 28, 2022
7eae9c2
修改cuda kernel的bug
thunder95 Apr 29, 2022
1f2a6e6
修复count_if在其他硬件平台不兼容
thunder95 Apr 29, 2022
7fb02ab
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 Apr 29, 2022
1cce8df
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 Apr 29, 2022
adaa2a1
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 Apr 30, 2022
d5c35d8
修复某些cpu硬件不兼容
thunder95 Apr 30, 2022
4ec331b
修复某些cpu硬件不兼容
thunder95 Apr 30, 2022
24424a7
修复isnan判断
thunder95 Apr 30, 2022
a0e6c3c
兼容numpy低版本不支持全部nan的情况
thunder95 Apr 30, 2022
0dac2bd
兼容numpy低版本不支持全部nan的情况
thunder95 Apr 30, 2022
2a944f6
fix code example
thunder95 May 1, 2022
d7bdc21
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 May 5, 2022
06af183
fix api comment error
thunder95 May 5, 2022
39f5eb9
修改反向传播逻辑以及c++处理逻辑
thunder95 May 10, 2022
eb8cb64
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 May 10, 2022
bcfb015
完成修改建议
thunder95 May 11, 2022
718fcdb
typo pre_dim
thunder95 May 12, 2022
8c158b5
update en docs, test=document_fix
thunder95 May 20, 2022
b0c9471
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 May 20, 2022
5f14183
Merge branch 'nanmedian' of https://github.com/thunder95/Paddle into …
thunder95 May 20, 2022
46dc918
remove numpy in en doc, test=document_fix
thunder95 May 23, 2022
21e131e
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 May 23, 2022
117e102
add r,test=document_fix
thunder95 May 25, 2022
dc6b654
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 May 25, 2022
4e8cbc1
Merge branch 'nanmedian' of https://github.com/thunder95/Paddle into …
thunder95 May 25, 2022
a3b23f6
添加api到all
thunder95 May 26, 2022
be473ea
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 May 26, 2022
6744d0a
follow advice from chenwhql
thunder95 May 26, 2022
8021de0
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
thunder95 May 26, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 125 additions & 0 deletions paddle/fluid/operators/nanmedian_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

namespace paddle {
namespace operators {

class NanmedianOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};

class NanmedianOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor), "
"the input feature data of NanmedianOp, dtype should be"
"int32, int64, float16, float32 or float64.");
AddOutput(
"MedianIndex",
"Store the index position of median values, The calculation differs "
"in the odd or even valid elements numbers."
"Along the axis, two elements contributed to the median value in "
"each row."
"If the amount of valid elements were even, both were the same.")
.AsIntermediate()
.AsExtra();
AddOutput("Out",
"(Tensor),"
" the output of NanmedianOp, whose dtype is the same as X");
AddAttr<bool>("keepdim",
"(bool, default true) "
"If true, retain the reduced axis with length 1.")
.SetDefault(true);
AddAttr<std::vector<int>>("axis",
"(std::vector<int>). List of integers,"
" indicating the dimensions to calculate medians")
.SetDefault({});
AddComment(R"DOC(
Nanmedian operator

This operator is considered as an extention of median operation,
which supports specifically the case of NaN values in the input.

If all the elements in input are NaN it will also return NaN.
If no elements in input are Nan, this op is identical to thie median op.

If the valid count of elements is a even number, the average value of
the elements in the middle is calculated as the median.

This operator can also supports multiple axis.
)DOC");
}
};

template <typename T>
class NanmedianGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

void Apply(GradOpPtr<T> op) const override {
op->SetType("nanmedian_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("MedianIndex", this->Output("MedianIndex"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};

class NanmedianGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(nanmedian, NanmedianInferShapeFunctor,
PD_INFER_META(phi::NanmedianInferMeta));

REGISTER_OPERATOR(nanmedian, ops::NanmedianOp, ops::NanmedianOpMaker,
ops::NanmedianGradMaker<paddle::framework::OpDesc>,
ops::NanmedianGradMaker<paddle::imperative::OpBase>,
NanmedianInferShapeFunctor);

DECLARE_INFER_SHAPE_FUNCTOR(nanmedian_grad, NanmedianGradInferShapeFunctor,
PD_INFER_META(phi::NanmedianGradInferMeta));

REGISTER_OPERATOR(nanmedian_grad, ops::NanmedianGradOp,
NanmedianGradInferShapeFunctor);
11 changes: 11 additions & 0 deletions paddle/phi/infermeta/backward.cc
Original file line number Diff line number Diff line change
Expand Up @@ -377,6 +377,17 @@ void MultiplexGradInferMeta(const MetaTensor& ids,
}
}

void NanmedianGradInferMeta(const MetaTensor& x,
const MetaTensor& median_index,
const MetaTensor& out_grad,
const IntArray& axes,
bool keep_dim,
MetaTensor* x_grad) {
auto x_dims = x.dims();
x_grad->set_dims(x_dims);
x_grad->set_dtype(x.dtype());
}

void NllLossGradInferMeta(const MetaTensor& x,
const MetaTensor& label,
paddle::optional<const MetaTensor&> weight,
Expand Down
7 changes: 7 additions & 0 deletions paddle/phi/infermeta/backward.h
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,13 @@ void MultiplexGradInferMeta(const MetaTensor& ids,
const MetaTensor& out_grad,
std::vector<MetaTensor*> ins_grad);

void NanmedianGradInferMeta(const MetaTensor& x,
const MetaTensor& median_index,
const MetaTensor& out_grad,
const IntArray& axes,
bool keep_dim,
MetaTensor* x_grad);

void NllLossGradInferMeta(const MetaTensor& input,
const MetaTensor& label,
paddle::optional<const MetaTensor&> weight,
Expand Down
59 changes: 59 additions & 0 deletions paddle/phi/infermeta/unary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1246,6 +1246,65 @@ void MultinomialInferMeta(const MetaTensor& x,
out->set_dtype(DataType::INT64);
}

void NanmedianInferMeta(const MetaTensor& x,
const IntArray& axes,
bool keep_dim,
MetaTensor* out,
MetaTensor* median_index) {
std::vector<int64_t> axis_list = axes.GetData();
auto x_dim = x.dims();
int64_t x_rank = x_dim.size();
out->set_dtype(x.dtype());
median_index->set_dtype(DataType::INT64);
median_index->set_dims(make_ddim({x.numel() * 2}));

std::vector<int32_t> out_dim;
if (axis_list.empty()) {
if (keep_dim) {
for (int64_t i = 0; i < x_rank; i++) {
out_dim.push_back(1);
}
} else {
out_dim.push_back(1);
}
} else {
std::vector<int64_t> cleaned_axis;
for (auto& axis : axis_list) {
if (axis < 0) axis += x_rank;

PADDLE_ENFORCE_LT(
axis,
x_rank,
errors::InvalidArgument(
"Attr(axis) value should be in range [-R, R-1], R is "
"the rank of Input(X). But received axis: %d, R: %d. "
"Current Input(X)'s shape is=[%s].",
axis,
x_rank,
x_dim));

PADDLE_ENFORCE_EQ(
std::find(cleaned_axis.begin(), cleaned_axis.end(), axis),
cleaned_axis.end(),
errors::InvalidArgument("Attr(axes) has duplicated elements: %d.",
static_cast<int>(axis)));

cleaned_axis.push_back(axis);
}

for (int64_t i = 0; i < x_rank; i++) {
if (std::find(cleaned_axis.begin(), cleaned_axis.end(), i) ==
cleaned_axis.end()) {
out_dim.push_back(x_dim[i]);
} else if (keep_dim) {
out_dim.push_back(1);
}
}
}

out->set_dims(make_ddim(out_dim));
}

void NormInferMeta(const MetaTensor& x,
int axis,
float epsilon,
Expand Down
7 changes: 7 additions & 0 deletions paddle/phi/infermeta/unary.h
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,13 @@ void MultinomialInferMeta(const MetaTensor& x,
int num_samples,
bool replacement,
MetaTensor* out);

void NanmedianInferMeta(const MetaTensor& x,
const IntArray& axes,
bool keep_dim,
MetaTensor* out,
MetaTensor* median_index);

void NormInferMeta(const MetaTensor& x,
int axis,
float epsilon,
Expand Down
99 changes: 99 additions & 0 deletions paddle/phi/kernels/cpu/nanmedian_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/nanmedian_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Context>
void CalcMedianGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& median_index,
const DenseTensor& out_grad,
const IntArray& axes,
DenseTensor* x_grad,
T* x_grad_ptr) {
phi::funcs::SetConstant<Context, T> set_zero;
set_zero(dev_ctx, x_grad, static_cast<T>(0));
if (!x_grad_ptr) return;

const int64_t* m_ptr = median_index.data<int64_t>();
const T* out_grad_ptr = out_grad.data<T>();
int64_t numel = x.numel();
auto x_dim = x.dims();
int64_t rank = x_dim.size();
int64_t stride = x_dim[rank - 1];

int64_t pre_dim = numel / stride;
int64_t i = 0;
int64_t offset = 0;
T div_factor = static_cast<T>(2.0);
for (i = 0; i < pre_dim; i++) {
if (m_ptr[2 * i] >= 0) {
if (m_ptr[2 * i] == m_ptr[2 * i + 1]) {
x_grad_ptr[offset + m_ptr[2 * i]] = out_grad_ptr[i];
} else {
x_grad_ptr[offset + m_ptr[2 * i]] = out_grad_ptr[i] / div_factor;
x_grad_ptr[offset + m_ptr[2 * i + 1]] = out_grad_ptr[i] / div_factor;
}
}
offset += stride;
}
}

template <typename T, typename Context>
void BaseMedianGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& median_index,
const DenseTensor& out_grad,
const IntArray& axes,
DenseTensor* x_grad) {
auto rank = x.dims().size();
T* x_grad_ptr = dev_ctx.template Alloc<T>(x_grad);
if (axes.size() && (rank > 1)) {
DenseTensor tmp_x_grad(*x_grad);
CalcMedianGradKernel<T, Context>(
dev_ctx, x, median_index, out_grad, axes, &tmp_x_grad, x_grad_ptr);
PostprocessMedianGradKernel<T, Context>(dev_ctx, &tmp_x_grad, axes, x_grad);
} else {
CalcMedianGradKernel<T, Context>(
dev_ctx, x, median_index, out_grad, axes, x_grad, x_grad_ptr);
}
}

template <typename T, typename Context>
void NanmedianGradKernel(const Context& dev_ctx,
const DenseTensor& input,
const DenseTensor& median_index,
const DenseTensor& out_grad,
const IntArray& axes,
bool keep_dim,
DenseTensor* x_grad) {
BaseMedianGradKernel<T, Context>(
dev_ctx, input, median_index, out_grad, axes, x_grad);
}

} // namespace phi

PD_REGISTER_KERNEL(nanmedian_grad,
CPU,
ALL_LAYOUT,
phi::NanmedianGradKernel,
float,
double,
int,
int64_t) {}
Loading