Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Paddle-TRT] reshape fill_constant #44314

Merged
merged 4 commits into from
Jul 18, 2022
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2089,6 +2089,7 @@ USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
USE_TRT_CONVERTER(fill_constant)
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
Expand Down
3 changes: 2 additions & 1 deletion paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,8 @@ list(
c_allreduce_op.cc
top_k_op.cc
squeeze2_op.cc
unsqueeze2_op.cc)
unsqueeze2_op.cc
fill_constant_op.cc)

if(CUSPARSELT_FOUND AND ${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 8)
list(APPEND CONVERT_FILES sparse_fc_op.cc sparse_multihead_matmul_op.cc)
Expand Down
71 changes: 71 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/fill_constant_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class FillConstantOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4)
<< "convert a fluid fill_constant op to tensorrt fill_constant layer";

framework::OpDesc op_desc(op, nullptr);
int dtype = BOOST_GET_CONST(int, op_desc.GetAttr("dtype"));
std::string str_value =
BOOST_GET_CONST(std::string, op_desc.GetAttr("str_value"));
std::vector<int64_t> shape =
BOOST_GET_CONST(std::vector<int64_t>, op_desc.GetAttr("shape"));
std::unique_ptr<framework::Tensor> out_tensor(new framework::Tensor());
out_tensor->Resize(phi::make_ddim(shape));
nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
void* trt_data = nullptr;
size_t trt_num;
if (dtype == 2 || dtype == 3) { // int, int64
auto* tmp_ptr = out_tensor->mutable_data<int>(platform::CPUPlace());
for (int64_t i = 0; i < out_tensor->numel(); i++)
tmp_ptr[i] = std::stoi(str_value);
trt_dtype = nvinfer1::DataType::kINT32;
trt_data = static_cast<void*>(tmp_ptr);
} else if (dtype == 5) { // float
auto* tmp_ptr = out_tensor->mutable_data<float>(platform::CPUPlace());
for (int64_t i = 0; i < out_tensor->numel(); i++)
tmp_ptr[i] = std::stof(str_value);
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

std::transform 可以实现相同的功能,代码更简洁

trt_data = static_cast<void*>(tmp_ptr);
} else {
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个删了吧

trt_num = static_cast<size_t>(out_tensor->numel());
engine_->SetWeights("fill_constant_value", std::move(out_tensor));
TensorRTEngine::Weight weight{trt_dtype, trt_data, trt_num};

nvinfer1::Dims trt_in_shape;
trt_in_shape.nbDims = shape.size();
for (size_t i = 0; i < shape.size(); i++) trt_in_shape.d[i] = shape[i];
nvinfer1::ILayer* layer =
TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_in_shape, weight.get());
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "fill_constant", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(fill_constant, FillConstantOpConverter);
28 changes: 23 additions & 5 deletions paddle/fluid/inference/tensorrt/convert/reshape_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -35,14 +35,29 @@ class ReshapeOpConverter : public OpConverter {
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);

std::vector<int> shape =
BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("shape"));
int nbDims_num = shape.size();
nvinfer1::Dims reshape_dim;
if (engine_->with_dynamic_shape()) { // running the TRT Dynamic Shape mode
reshape_dim.nbDims = nbDims_num;
for (int i = 0; i < nbDims_num; ++i) {
reshape_dim.d[i] = shape[i];
nvinfer1::ITensor* real_shape_tensor = nullptr;
std::vector<nvinfer1::ITensor*> concat_inputs;
bool one_input = false;
if (engine_->with_dynamic_shape()) {
if (op_desc.Inputs().find("ShapeTensor") != op_desc.Inputs().end() &&
op_desc.Input("ShapeTensor").size() > 0) {
for (auto name : op_desc.Input("ShapeTensor"))
concat_inputs.push_back(engine_->GetITensor(name));
real_shape_tensor = Concat(concat_inputs);
} else if (op_desc.Inputs().find("Shape") != op_desc.Inputs().end() &&
op_desc.Input("Shape").size() > 0) {
real_shape_tensor = engine_->GetITensor(op_desc.Input("Shape")[0]);
} else {
reshape_dim.nbDims = nbDims_num;
for (int i = 0; i < nbDims_num; ++i) {
reshape_dim.d[i] = shape[i];
}
one_input = true;
}
} else { // running the TRT Static Shape mode
reshape_dim.nbDims = nbDims_num - 1;
Expand All @@ -51,7 +66,10 @@ class ReshapeOpConverter : public OpConverter {
}
}
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
layer->setReshapeDimensions(reshape_dim);
if (!engine_->with_dynamic_shape() || one_input)
layer->setReshapeDimensions(reshape_dim);
else
layer->setInput(1, *real_shape_tensor);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "reshape", {output_name}, test_mode);
}
Expand Down
26 changes: 26 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"transformer_input_convert",
"recover_padding",
"remove_padding",
"fill_constant",
"squeeze2",
"unsqueeze2"};
std::unordered_set<std::string> teller_set{
Expand Down Expand Up @@ -274,6 +275,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"transformer_input_convert",
"recover_padding",
"remove_padding",
"fill_constant",
"squeeze2",
"unsqueeze2"};
};
Expand Down Expand Up @@ -1447,6 +1449,27 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}
}

if (op_type == "fill_constant") {
auto fill_constant_inputs = desc.Inputs();
if (fill_constant_inputs.find("ValueTensor") !=
fill_constant_inputs.end()) {
if (desc.Input("ValueTensor").size()) return false;
}
if (fill_constant_inputs.find("ShapeTensor") !=
fill_constant_inputs.end()) {
if (desc.Input("ShapeTensor").size()) return false;
}
if (fill_constant_inputs.find("ShapeTensorList") !=
fill_constant_inputs.end()) {
if (desc.Input("ShapeTensorList").size()) return false;
}
int dtype = BOOST_GET_CONST(int, desc.GetAttr("dtype"));
// only support int32, int64, float32
if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
return false;
}
}

if (op_type == "instance_norm") {
if (with_dynamic_shape) {
VLOG(3) << "trt instance_norm op does not support dynamic shape ";
Expand Down Expand Up @@ -1800,6 +1823,9 @@ bool OpTeller::Tell(const framework::ir::Node* node,
}

if (op_type == "reshape" || op_type == "reshape2") {
if (with_dynamic_shape) {
return true;
}
if (!desc.HasAttr("shape")) {
return false;
}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import unittest
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertSplitTest(TrtLayerAutoScanTest):

def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):

def generate_value_data(attrs: List[Dict[str, Any]]):
return np.array([1]).astype(np.int32)

def generate_shape_data(attrs: List[Dict[str, Any]]):
return np.array([4, 23]).astype(np.int32)

def generate_shapelist_data(attrs: List[Dict[str, Any]]):
return np.array([4]).astype(np.int32)

for shape in [[2, 3, 4]]:
for num_input in [0, 1, 2, 3]:
for dtype in [5, 2, 3]:
for str_value in ["2", "23", "-1"]:
self.num_input = num_input
dics = [{
"str_value": str_value,
"shape": shape,
"dtype": dtype
}, {
"axis": -1
}]
dics_intput = [{
"ValueTensor": ["value_data"]
}, {
"ShapeTensor": ["shape_data"],
}, {
"ShapeTensorList": ["shapeT1_data", "shapeT2_data"],
}, {}]
ops_config = [
{
"op_type": "fill_constant",
"op_inputs": dics_intput[num_input],
"op_outputs": {
"Out": ["out_data"],
},
"op_attrs": dics[0]
},
]

def generate_input():
return np.random.random([1, 1]).astype(np.float32)

ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"value_data":
TensorConfig(data_gen=partial(
generate_value_data, dics)),
"shape_data":
TensorConfig(data_gen=partial(
generate_shape_data, dics)),
"shapeT1_data":
TensorConfig(data_gen=partial(
generate_shapelist_data, dics)),
"shapeT2_data":
TensorConfig(data_gen=partial(
generate_shapelist_data, dics)),
},
outputs=["out_data"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):

def generate_dynamic_shape(attrs):
self.input_shape = [1, 1]
max_shape = list(self.input_shape)
min_shape = list(self.input_shape)
opt_shape = list(self.input_shape)
for i in range(len(self.input_shape)):
max_shape[i] = max_shape[i] + 1
self.dynamic_shape.min_input_shape = {"Y_data": min_shape}
self.dynamic_shape.max_input_shape = {"Y_data": max_shape}
self.dynamic_shape.opt_input_shape = {"Y_data": opt_shape}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if (self.num_input < 3):
return 0, 6
return 1, 5

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# Don't test static shape

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5

def add_skip_trt_case(self):
pass

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()
Loading