Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Paddle Inference] Add where trt converter #47820

Merged
merged 8 commits into from
Nov 14, 2022
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2258,6 +2258,7 @@ USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER(leaky_relu);
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(where);
USE_TRT_CONVERTER(swish);
USE_TRT_CONVERTER(silu);
USE_TRT_CONVERTER(group_norm);
Expand Down
1 change: 1 addition & 0 deletions paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ list(
layer_norm_op.cc
multihead_matmul_op.cc
shuffle_channel_op.cc
where_op.cc
swish_op.cc
silu_op.cc
instance_norm_op.cc
Expand Down
62 changes: 62 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/where_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;

namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

/*
* Where Op
*/
class WhereOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(3) << "convert a fluid where op to tensorrt where layer";

framework::OpDesc op_desc(op, nullptr);
std::string input_x_name = op_desc.Input("X").front();
std::string condition_name = op_desc.Input("Condition").front();
std::string input_y_name = op_desc.Input("Y").front();
std::string output_name = op_desc.Output("Out").front();

const auto input_x_tensor = engine_->GetITensor(input_x_name);
const auto condition_tensor = engine_->GetITensor(condition_name);
const auto input_y_tensor = engine_->GetITensor(input_y_name);

auto layer = TRT_ENGINE_ADD_LAYER(
engine_, Select, *condition_tensor, *input_x_tensor, *input_y_tensor);

RreplenishLayerAndOutput(layer, "where", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(where, WhereOpConverter);
2 changes: 2 additions & 0 deletions paddle/fluid/inference/tensorrt/engine.h
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,8 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
return TRT_DT::kINT32;
case FluidDT::VarType_Type_FP16:
return TRT_DT::kHALF;
case FluidDT::VarType_Type_BOOL:
return TRT_DT::kBOOL;
Comment on lines +67 to +68
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cast是不是也和这个有关

default:
return TRT_DT::kINT32;
}
Expand Down
9 changes: 9 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1654,6 +1654,13 @@ struct SimpleOpTypeSetTeller : public Teller {
#endif
}

if (op_type == "where") {
if (!with_dynamic_shape) {
VLOG(3) << "the where op does not support static shape yet";
return false;
}
}

if (op_type == "skip_layernorm") {
if (!with_dynamic_shape) {
VLOG(3) << "the skip_layernorm does not support static shape yet";
Expand Down Expand Up @@ -2225,6 +2232,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"leaky_relu",
"fc",
"shuffle_channel",
"where",
"swish",
"silu",
"celu",
Expand Down Expand Up @@ -2346,6 +2354,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"leaky_relu",
"fc",
"shuffle_channel",
"where",
"swish",
"silu",
"celu",
Expand Down
2 changes: 2 additions & 0 deletions paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -601,6 +601,8 @@ class TensorRTEngineOp : public framework::OperatorBase {
buffers[bind_index] = static_cast<void *>(t.data<int32_t>());
} else if (type == framework::proto::VarType::FP16) {
buffers[bind_index] = static_cast<void *>(t.data<float16>());
} else if (type == framework::proto::VarType::BOOL) {
buffers[bind_index] = static_cast<void *>(t.data<bool>());
} else {
PADDLE_THROW(
platform::errors::Fatal("The TRT Engine OP only support "
Expand Down
25 changes: 18 additions & 7 deletions python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,14 +181,25 @@ def generate_op_config(
ops = []
for i in range(len(ops_config)):
op_config = ops_config[i]
ops.append(
OpConfig(
type=op_config['op_type'],
inputs=op_config['op_inputs'],
outputs=op_config['op_outputs'],
attrs=op_config['op_attrs'],
if 'outputs_dtype' in op_config:
ops.append(
OpConfig(
type=op_config['op_type'],
inputs=op_config['op_inputs'],
outputs=op_config['op_outputs'],
attrs=op_config['op_attrs'],
outputs_dtype=op_config['outputs_dtype'],
)
)
else:
ops.append(
OpConfig(
type=op_config['op_type'],
inputs=op_config['op_inputs'],
outputs=op_config['op_outputs'],
attrs=op_config['op_attrs'],
)
)
)
return ops

@abc.abstractmethod
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,228 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest
from program_config import TensorConfig, ProgramConfig
import unittest
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import List


class TrtConvertActivationTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
self.trt_param.workspace_size = 1073741824

def generate_input1(dims, batch):
if dims == 1:
return np.zeros((batch)).astype(np.float32)
elif dims == 2:
return np.ones((batch, 4)).astype(np.float32)
elif dims == 3:
return np.ones((batch, 4, 6)).astype(np.float32)
else:
return np.ones((batch, 4, 6, 8)).astype(np.float32)

def generate_input2(dims, batch):
if dims == 1:
return np.zeros((batch)).astype(np.float32)
elif dims == 2:
return np.ones((batch, 4)).astype(np.float32)
elif dims == 3:
return np.ones((batch, 4, 6)).astype(np.float32)
else:
return np.ones((batch, 4, 6, 8)).astype(np.float32)

def generate_input3(dims, batch):
if dims == 1:
return np.zeros((batch)).astype(np.float32)
elif dims == 2:
return np.ones((batch, 4)).astype(np.float32)
elif dims == 3:
return np.ones((batch, 4, 6)).astype(np.float32)
else:
return np.ones((batch, 4, 6, 8)).astype(np.float32)

for dims in [1, 2, 3, 4]:
for batch in [1, 2]:
self.dims = dims
dics = [{}]
ops_config = [
{
"op_type": "cast",
"op_inputs": {"X": ["condition_data"]},
"op_outputs": {"Out": ["condition_data_bool"]},
"op_attrs": {"in_dtype": 5, "out_dtype": 0},
"outputs_dtype": {"condition_data_bool": np.bool},
},
{
"op_type": "where",
"op_inputs": {
"Condition": ["condition_data_bool"],
"X": ["input_x_data"],
"Y": ["input_y_data"],
},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": dics[0],
"outputs_dtype": {"condition_data_bool": np.bool},
},
]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"condition_data": TensorConfig(
data_gen=partial(generate_input1, dims, batch)
),
"input_x_data": TensorConfig(
data_gen=partial(generate_input2, dims, batch)
),
"input_y_data": TensorConfig(
data_gen=partial(generate_input3, dims, batch)
),
},
outputs=["output_data"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {
"condition_data": [1],
"condition_data_bool": [1],
"input_x_data": [1],
"input_y_data": [1],
}
self.dynamic_shape.max_input_shape = {
"condition_data": [2],
"condition_data_bool": [2],
"input_x_data": [2],
"input_y_data": [2],
}
self.dynamic_shape.opt_input_shape = {
"condition_data": [1],
"condition_data_bool": [1],
"input_x_data": [1],
"input_y_data": [1],
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"condition_data": [1, 4],
"condition_data_bool": [1, 4],
"input_x_data": [1, 4],
"input_y_data": [1, 4],
}
self.dynamic_shape.max_input_shape = {
"condition_data": [2, 4],
"condition_data_bool": [2, 4],
"input_x_data": [2, 4],
"input_y_data": [2, 4],
}
self.dynamic_shape.opt_input_shape = {
"condition_data": [1, 4],
"condition_data_bool": [1, 4],
"input_x_data": [1, 4],
"input_y_data": [1, 4],
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"condition_data": [1, 4, 6],
"condition_data_bool": [1, 4, 6],
"input_x_data": [1, 4, 6],
"input_y_data": [1, 4, 6],
}
self.dynamic_shape.max_input_shape = {
"condition_data": [2, 4, 6],
"condition_data_bool": [2, 4, 6],
"input_x_data": [2, 4, 6],
"input_y_data": [2, 4, 6],
}
self.dynamic_shape.opt_input_shape = {
"condition_data": [1, 4, 6],
"condition_data_bool": [1, 4, 6],
"input_x_data": [1, 4, 6],
"input_y_data": [1, 4, 6],
}
elif self.dims == 4:
self.dynamic_shape.min_input_shape = {
"condition_data": [1, 4, 6, 8],
"condition_data_bool": [1, 4, 6, 8],
"input_x_data": [1, 4, 6, 8],
"input_y_data": [1, 4, 6, 8],
}
self.dynamic_shape.max_input_shape = {
"condition_data": [2, 4, 6, 8],
"condition_data_bool": [2, 4, 6, 8],
"input_x_data": [2, 4, 6, 8],
"input_y_data": [2, 4, 6, 8],
}
self.dynamic_shape.opt_input_shape = {
"condition_data": [1, 4, 6, 8],
"condition_data_bool": [1, 4, 6, 8],
"input_x_data": [1, 4, 6, 8],
"input_y_data": [1, 4, 6, 8],
}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if not dynamic_shape:
return 0, 6
return 1, 5

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()