Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Test PR #360

Merged
merged 2 commits into from
Nov 15, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
148 changes: 88 additions & 60 deletions playbook/stories/fastf1_spotlight_demo.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
"source": [
"import fastf1\n",
"\n",
"session = fastf1.get_session(2023, 'Montreal', 'Race')\n",
"session = fastf1.get_session(2023, \"Montreal\", \"Race\")\n",
"\n",
"session.load(telemetry=True, laps=True)\n",
"\n",
Expand All @@ -41,20 +41,36 @@
"import pandas as pd\n",
"from tqdm import tqdm\n",
"\n",
"\n",
"def extract_telemetry(laps, columns):\n",
" df_telemetry = pd.DataFrame(columns=columns)\n",
" row_dict = {}\n",
"\n",
" for index, lap in tqdm(laps.iterlaps(), total=laps.shape[0]): \n",
" telemetry = lap.get_telemetry() \n",
" for index, lap in tqdm(laps.iterlaps(), total=laps.shape[0]):\n",
" telemetry = lap.get_telemetry()\n",
" for column in columns:\n",
" row_dict[column] = [telemetry['Distance'].tolist(), telemetry[column].tolist()]\n",
" df_telemetry.loc[index]=row_dict\n",
" \n",
" row_dict[column] = [\n",
" telemetry[\"Distance\"].tolist(),\n",
" telemetry[column].tolist(),\n",
" ]\n",
" df_telemetry.loc[index] = row_dict\n",
"\n",
" return df_telemetry\n",
"\n",
"columns = [\"DistanceToDriverAhead\", \"RPM\", \"Speed\", \"nGear\", \"Throttle\", \"Brake\", \"DRS\", \"X\", \"Y\", \"Z\"]\n",
"df_telemetry = extract_telemetry(laps, columns)\n"
"\n",
"columns = [\n",
" \"DistanceToDriverAhead\",\n",
" \"RPM\",\n",
" \"Speed\",\n",
" \"nGear\",\n",
" \"Throttle\",\n",
" \"Brake\",\n",
" \"DRS\",\n",
" \"X\",\n",
" \"Y\",\n",
" \"Z\",\n",
"]\n",
"df_telemetry = extract_telemetry(laps, columns)"
]
},
{
Expand All @@ -80,24 +96,29 @@
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"dist_index = np.array(list(range(-10, 4400, 5)))\n",
"\n",
"\n",
"def extract_embeddings(laps, columns):\n",
" \n",
" column_names= []\n",
" column_names = []\n",
" for column in columns:\n",
" column_names.append(column + \"_emb\")\n",
" \n",
"\n",
" df_embedding = pd.DataFrame(columns=column_names)\n",
" row_dict = {}\n",
"\n",
" for index, lap in tqdm(laps.iterlaps(), total=laps.shape[0]): \n",
" telemetry = lap.get_telemetry() \n",
" for index, lap in tqdm(laps.iterlaps(), total=laps.shape[0]):\n",
" telemetry = lap.get_telemetry()\n",
" for column in columns:\n",
" column_name = column + \"_emb\"\n",
" row_dict[column_name] = np.interp(x=dist_index, xp=telemetry['Distance'].to_numpy(), fp=telemetry[column].to_numpy()).tolist() \n",
" df_embedding.loc[index]=row_dict\n",
" \n",
" row_dict[column_name] = np.interp(\n",
" x=dist_index,\n",
" xp=telemetry[\"Distance\"].to_numpy(),\n",
" fp=telemetry[column].to_numpy(),\n",
" ).tolist()\n",
" df_embedding.loc[index] = row_dict\n",
"\n",
" return df_embedding\n",
"\n",
"\n",
Expand Down Expand Up @@ -130,112 +151,110 @@
"from os import path\n",
"\n",
"\n",
"#function to print the gear and speed map\n",
"# function to print the gear and speed map\n",
"\n",
"\n",
"def create_speed_image(lapnumber, tel):\n",
" filename = \"imgs/speed/speed_vis_\" + str(lapnumber) + \".png\"\n",
"\n",
" filename = 'imgs/speed/speed_vis_' + str(lapnumber) +'.png'\n",
" \n",
" if path.isfile(filename):\n",
" return filename\n",
" \n",
"\n",
" colormap = mpl.cm.plasma\n",
" # Get telemetry data\n",
" x = np.array(tel['X'].values)\n",
" y = np.array(tel['Y'].values)\n",
" color = tel['Speed'] # value to base color gradient on\n",
" x = np.array(tel[\"X\"].values)\n",
" y = np.array(tel[\"Y\"].values)\n",
" color = tel[\"Speed\"] # value to base color gradient on\n",
"\n",
" points = np.array([x, y]).T.reshape(-1, 1, 2)\n",
" segments = np.concatenate([points[:-1], points[1:]], axis=1)\n",
"\n",
" # We create a plot with title and adjust some setting to make it look good.\n",
" fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(12, 6.75)) \n",
" fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(12, 6.75))\n",
"\n",
" # Adjust margins and turn of axis\n",
" plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.12)\n",
" ax.axis('off')\n",
"\n",
" ax.axis(\"off\")\n",
"\n",
" # After this, we plot the data itself.\n",
" # Create background track line\n",
" ax.plot(tel['X'], tel['Y'], color='black', linestyle='-', linewidth=16, zorder=0)\n",
" ax.plot(tel[\"X\"], tel[\"Y\"], color=\"black\", linestyle=\"-\", linewidth=16, zorder=0)\n",
"\n",
" # Create a continuous norm to map from data points to colors\n",
" norm = plt.Normalize(color.min(), color.max())\n",
" lc = LineCollection(segments, cmap=colormap, norm=norm, linestyle='-', linewidth=5)\n",
" lc = LineCollection(segments, cmap=colormap, norm=norm, linestyle=\"-\", linewidth=5)\n",
"\n",
" # Set the values used for colormapping\n",
" lc.set_array(color)\n",
"\n",
" # Merge all line segments together\n",
" line = ax.add_collection(lc)\n",
"\n",
"\n",
" # Finally, we create a color bar as a legend.\n",
" cbaxes = fig.add_axes([0.25, 0.05, 0.5, 0.05])\n",
" normlegend = mpl.colors.Normalize(vmin=color.min(), vmax=color.max())\n",
" legend = mpl.colorbar.ColorbarBase(cbaxes, norm=normlegend, cmap=colormap, orientation=\"horizontal\")\n",
" legend = mpl.colorbar.ColorbarBase(\n",
" cbaxes, norm=normlegend, cmap=colormap, orientation=\"horizontal\"\n",
" )\n",
"\n",
"\n",
" \n",
" plt.savefig(filename, format='png')\n",
" plt.savefig(filename, format=\"png\")\n",
"\n",
" plt.clf()\n",
"\n",
" plt.close('all')\n",
" plt.close(\"all\")\n",
"\n",
" return filename\n",
"\n",
"\n",
"def create_gear_image(lapnumber, tel):\n",
"\n",
" filename = 'imgs/gears/gear_shift_vis_' + str(lapnumber) +'.png'\n",
" filename = \"imgs/gears/gear_shift_vis_\" + str(lapnumber) + \".png\"\n",
"\n",
" if path.isfile(filename):\n",
" return filename\n",
"\n",
" x = np.array(tel['X'].values)\n",
" y = np.array(tel['Y'].values)\n",
" x = np.array(tel[\"X\"].values)\n",
" y = np.array(tel[\"Y\"].values)\n",
"\n",
" points = np.array([x, y]).T.reshape(-1, 1, 2)\n",
" segments = np.concatenate([points[:-1], points[1:]], axis=1)\n",
" gear = tel['nGear'].to_numpy().astype(float)\n",
" gear = tel[\"nGear\"].to_numpy().astype(float)\n",
"\n",
" cmap = cm.get_cmap('Paired')\n",
" lc_comp = LineCollection(segments, norm=plt.Normalize(1, cmap.N+1), cmap=cmap)\n",
" cmap = cm.get_cmap(\"Paired\")\n",
" lc_comp = LineCollection(segments, norm=plt.Normalize(1, cmap.N + 1), cmap=cmap)\n",
" lc_comp.set_array(gear)\n",
" lc_comp.set_linewidth(4)\n",
"\n",
" plt.gca().add_collection(lc_comp)\n",
" plt.axis('equal')\n",
" plt.axis(\"equal\")\n",
" plt.tick_params(labelleft=False, left=False, labelbottom=False, bottom=False)\n",
"\n",
" cbar = plt.colorbar(mappable=lc_comp, label=\"Gear\", boundaries=np.arange(1, 10))\n",
" cbar.set_ticks(np.arange(1.5, 9.5))\n",
" cbar.set_ticklabels(np.arange(1, 9))\n",
"\n",
" filename = 'imgs/gears/gear_shift_vis_' + str(lapnumber) +'.png'\n",
" plt.savefig(filename, format='png')\n",
" filename = \"imgs/gears/gear_shift_vis_\" + str(lapnumber) + \".png\"\n",
" plt.savefig(filename, format=\"png\")\n",
"\n",
" plt.clf()\n",
"\n",
" plt.close('all')\n",
" plt.close(\"all\")\n",
"\n",
" return filename\n",
"\n",
"\n",
"def extract_images(laps):\n",
" df_images = pd.DataFrame(columns=['gear_vis','speed_vis'])\n",
" df_images = pd.DataFrame(columns=[\"gear_vis\", \"speed_vis\"])\n",
" row_dict = {}\n",
"\n",
" for index, lap in tqdm(laps.iterlaps(), total=laps.shape[0]): \n",
" telemetry = lap.get_telemetry() \n",
" row_dict['gear_vis']=create_gear_image(index, telemetry)\n",
" row_dict['speed_vis']=create_speed_image(index, telemetry) \n",
" df_images.loc[index]=row_dict\n",
" \n",
" for index, lap in tqdm(laps.iterlaps(), total=laps.shape[0]):\n",
" telemetry = lap.get_telemetry()\n",
" row_dict[\"gear_vis\"] = create_gear_image(index, telemetry)\n",
" row_dict[\"speed_vis\"] = create_speed_image(index, telemetry)\n",
" df_images.loc[index] = row_dict\n",
"\n",
" return df_images\n",
"\n",
"\n",
"df_images = extract_images(laps)"
]
},
Expand All @@ -252,7 +271,7 @@
"metadata": {},
"outputs": [],
"source": [
"#concat the dataframes\n",
"# concat the dataframes\n",
"\n",
"df_metadata = pd.DataFrame(laps)\n",
"df = pd.concat([df_metadata, df_telemetry, df_images, df_embedding], axis=1)"
Expand All @@ -267,10 +286,10 @@
"from renumics import spotlight\n",
"from renumics.spotlight import dtypes\n",
"\n",
"#dtypes = {\"DistanceToDriverAhead\": spotlight.Sequence1D, \"RPM\": spotlight.Sequence1D, \"Speed\": spotlight.Sequence1D, \"nGear\": spotlight.Sequence1D,\n",
"# dtypes = {\"DistanceToDriverAhead\": spotlight.Sequence1D, \"RPM\": spotlight.Sequence1D, \"Speed\": spotlight.Sequence1D, \"nGear\": spotlight.Sequence1D,\n",
"# \"Throttle\": spotlight.Sequence1D, \"Brake\": spotlight.Sequence1D, \"DRS\": spotlight.Sequence1D, \"X\": spotlight.Sequence1D, \"Y\": spotlight.Sequence1D, \"Z\": spotlight.Sequence1D}\n",
"\n",
"spotlight.show(df)\n"
"spotlight.show(df)"
]
},
{
Expand All @@ -290,7 +309,7 @@
"\n",
"ds = datasets.Dataset.from_pandas(df)\n",
"\n",
"ds.save_to_disk('telemetry_test')"
"ds.save_to_disk(\"telemetry_test\")"
]
},
{
Expand All @@ -299,8 +318,18 @@
"metadata": {},
"outputs": [],
"source": [
"dtypes = {\"DistanceToDriverAhead\": spotlight.Sequence1D, \"RPM\": spotlight.Sequence1D, \"Speed\": spotlight.Sequence1D, \"nGear\": spotlight.Sequence1D,\n",
" \"Throttle\": spotlight.Sequence1D, \"Brake\": spotlight.Sequence1D, \"DRS\": spotlight.Sequence1D, \"X\": spotlight.Sequence1D, \"Y\": spotlight.Sequence1D, \"Z\": spotlight.Sequence1D}\n",
"dtypes = {\n",
" \"DistanceToDriverAhead\": spotlight.Sequence1D,\n",
" \"RPM\": spotlight.Sequence1D,\n",
" \"Speed\": spotlight.Sequence1D,\n",
" \"nGear\": spotlight.Sequence1D,\n",
" \"Throttle\": spotlight.Sequence1D,\n",
" \"Brake\": spotlight.Sequence1D,\n",
" \"DRS\": spotlight.Sequence1D,\n",
" \"X\": spotlight.Sequence1D,\n",
" \"Y\": spotlight.Sequence1D,\n",
" \"Z\": spotlight.Sequence1D,\n",
"}\n",
"\n",
"spotlight.show(df, dtype=dtypes)"
]
Expand All @@ -323,8 +352,7 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
},
"orig_nbformat": 4
}
},
"nbformat": 4,
"nbformat_minor": 2
Expand Down
Loading