Skip to content

This project involves the development of a complete ML pipeline with tracking and deployment capabilities.

Notifications You must be signed in to change notification settings

SURESHBEEKHANI/Wine-Quality-Prediction

Repository files navigation

End-to-end-Machine-Learning-Project-with-MLflow

Workflows

  1. Update config.yaml
  2. Update schema.yaml
  3. Update params.yaml
  4. Update the entity
  5. Update the configuration manager in src config
  6. Update the components
  7. Update the pipeline
  8. Update the main.py
  9. Update the app.py

How to run?

STEPS:

Clone the repository

git clone https://github.com/SURESHBEEKHANI/Wine-Quality-Prediction.git

### STEP 01- Create a conda environment after opening the repository

```bash
conda create -n mlproj python=3.8 -y
conda activate mlproj

STEP 02- install the requirements

pip install -r requirements.txt
# Finally run the following command
python app.py

Now,

open up you local host and port

MLflow

Documentation

cmd
  • mlflow ui

dagshub

dagshub

MLFLOW_TRACKING_URI=https://dagshub.com/SURESHBEEKHANI/Wine-Quality-Prediction.mlflow\ MLFLOW_TRACKING_USERNAME=SURESHBEEKHANI
MLFLOW_TRACKING_PASSWORD=351f35eb27ff659179e09eec95269b5fadbcca
python script.py

export MLFLOW_TRACKING_URI=https://dagshub.com/SURESHBEEKHANI/Wine-Quality-Prediction.mlflow

export MLFLOW_TRACKING_USERNAME=SURESHBEEKHANI\

export MLFLOW_TRACKING_PASSWORD=351f35eb27ff659179e09eec95269b5fadbcca\

AWS-CICD-Deployment-with-Github-Actions

1. Login to AWS console.

2. Create IAM user for deployment

#with specific access

1. EC2 access : It is virtual machine

2. ECR: Elastic Container registry to save your docker image in aws


#Description: About the deployment

1. Build docker image of the source code

2. Push your docker image to ECR

3. Launch Your EC2 

4. Pull Your image from ECR in EC2

5. Lauch your docker image in EC2

#Policy:

1. AmazonEC2ContainerRegistryFullAccess

2. AmazonEC2FullAccess

3. Create ECR repo to store/save docker image

- Save the URI: 566373416292.dkr.ecr.ap-south-1.amazonaws.com/mlproj

4. Create EC2 machine (Ubuntu)

5. Open EC2 and Install docker in EC2 Machine:

#optinal

sudo apt-get update -y

sudo apt-get upgrade

#required

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker ubuntu

newgrp docker

6. Configure EC2 as self-hosted runner:

setting>actions>runner>new self hosted runner> choose os> then run command one by one

7. Setup github secrets:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_REGION = us-east-1

AWS_ECR_LOGIN_URI = demo>>  566373416292.dkr.ecr.ap-south-1.amazonaws.com

ECR_REPOSITORY_NAME = simple-app

About MLflow

MLflow

  • Its Production Grade
  • Trace all of your expriements
  • Logging & tagging your model

About

This project involves the development of a complete ML pipeline with tracking and deployment capabilities.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published