-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Rel 10.4.3 - Updates for cmdstan-2.33.0
- Loading branch information
Showing
2 changed files
with
179 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
using StanSample | ||
using Distributions | ||
using DataFrames | ||
using StatsBase | ||
using StatsFuns | ||
using Test | ||
|
||
function zscore_transform(data) | ||
μ = mean(data) | ||
σ = std(data) | ||
z(d) = (d .- μ) ./ σ | ||
return z | ||
end | ||
|
||
|
||
N = 500 | ||
U_sim = rand(Normal(), N ) | ||
Q_sim = sample( 1:4 , N ; replace=true ) | ||
E_sim = [rand(Normal( U_sim[i] + Q_sim[i]), 1)[1] | ||
for i in 1:length(U_sim)] | ||
W_sim = [rand(Normal( U_sim[i] + 0 * Q_sim[i]), 1)[1] | ||
for i in 1:length(U_sim)] | ||
|
||
data = ( | ||
W=standardize(ZScoreTransform, W_sim), | ||
E=standardize(ZScoreTransform, E_sim), | ||
Q=standardize(ZScoreTransform, Float64.(Q_sim)) | ||
) | ||
|
||
stan14_6 = " | ||
data{ | ||
vector[500] W; | ||
vector[500] E; | ||
vector[500] Q; | ||
} | ||
parameters{ | ||
real aE; | ||
real aW; | ||
real bQE; | ||
real bEW; | ||
corr_matrix[2] Rho; | ||
vector<lower=0>[2] Sigma; | ||
} | ||
model{ | ||
vector[500] muW; | ||
vector[500] muE; | ||
Sigma ~ exponential( 1 ); | ||
Rho ~ lkj_corr( 2 ); | ||
bEW ~ normal( 0 , 0.5 ); | ||
bQE ~ normal( 0 , 0.5 ); | ||
aW ~ normal( 0 , 0.2 ); | ||
aE ~ normal( 0 , 0.2 ); | ||
for ( i in 1:500 ) { | ||
muE[i] = aE + bQE * Q[i]; | ||
} | ||
for ( i in 1:500 ) { | ||
muW[i] = aW + bEW * E[i]; | ||
} | ||
{ | ||
array[2] vector[500] YY; | ||
array[2] vector[500] MU; | ||
for ( j in 1:500 ) MU[j] = [ muW[j] , muE[j] ]'; | ||
for ( j in 1:500 ) YY[j] = [ W[j] , E[j] ]'; | ||
YY ~ multi_normal( MU , quad_form_diag(Rho , Sigma) ); | ||
} | ||
}"; | ||
|
||
m14_6s = SampleModel("m14_6s", stan14_6) | ||
rc14_6s = stan_sample(m14_6s; data) | ||
|
||
if success(rc14_6s) | ||
sdf14_6s = read_summary(m14_6s) | ||
sdf14_6s[8:17, [1, 2, 4, 5, 6, 7, 8]] |> display | ||
end | ||
|
||
#= | ||
> precis( m14.6 , depth=3 ) | ||
mean sd 5.5% 94.5% n_eff Rhat4 | ||
aE 0.00 0.04 -0.06 0.06 1669 1 | ||
aW 0.00 0.04 -0.07 0.07 1473 1 | ||
bQE 0.59 0.03 0.53 0.64 1396 1 | ||
bEW -0.05 0.07 -0.17 0.07 954 1 | ||
Rho[1,1] 1.00 0.00 1.00 1.00 NaN NaN | ||
Rho[1,2] 0.54 0.05 0.46 0.62 1010 1 | ||
Rho[2,1] 0.54 0.05 0.46 0.62 1010 1 | ||
Rho[2,2] 1.00 0.00 1.00 1.00 NaN NaN | ||
Sigma[1] 1.02 0.04 0.96 1.10 1011 1 | ||
Sigma[2] 0.81 0.03 0.77 0.85 1656 1 | ||
=# | ||
|
||
nd = read_samples(m14_6s, :nesteddataframe) | ||
@test size(nd) == (4000, 6) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
using DataFrames | ||
using StanSample | ||
using LinearAlgebra | ||
using Distributions | ||
using Random | ||
using Test | ||
|
||
Omega = [1 0.3 0.2; 0.3 1 0.1; 0.2 0.1 1] | ||
sigma = [1, 2, 3] | ||
Sigma = diagm(sigma) .* Omega .* diagm(sigma) | ||
N = 100 | ||
y = rand(MvNormal([0,0,0], Sigma), N) | ||
|
||
stan1_0 = " | ||
data { | ||
int<lower=1> N; // number of observations | ||
int<lower=1> J; // dimension of observations | ||
array[N] vector[J] y; // observations | ||
vector[J] Zero; // a vector of Zeros (fixed means of observations) | ||
} | ||
parameters { | ||
corr_matrix[J] Omega; | ||
vector[J] sigma; | ||
} | ||
transformed parameters { | ||
cov_matrix[J] Sigma; | ||
Sigma = quad_form_diag(Omega, sigma); | ||
} | ||
model { | ||
y ~ multi_normal(Zero,Sigma); // sampling distribution of the observations | ||
sigma ~ cauchy(0, 5); // prior on the standard deviations | ||
Omega ~ lkj_corr(1); // LKJ prior on the correlation matrix | ||
}"; | ||
|
||
stan2_0 = " | ||
data { | ||
int<lower=1> N; // number of observations | ||
int<lower=1> J; // dimension of observations | ||
array[N] vector[J] y; // observations | ||
vector[J] Zero; // a vector of Zeros (fixed means of observations) | ||
} | ||
parameters { | ||
cholesky_factor_corr[J] Lcorr; | ||
vector[J] sigma; | ||
} | ||
model { | ||
y ~ multi_normal_cholesky(Zero, diag_pre_multiply(sigma, Lcorr)); | ||
sigma ~ cauchy(0, 5); | ||
Lcorr ~ lkj_corr_cholesky(1); | ||
} | ||
generated quantities { | ||
matrix[J,J] Omega; | ||
matrix[J,J] Sigma; | ||
Omega = multiply_lower_tri_self_transpose(Lcorr); | ||
Sigma = quad_form_diag(Omega, sigma); | ||
}"; | ||
|
||
data = (N = N, J = 3, y=Matrix(transpose(y)), Zero=zeros(3)) | ||
m1_0s = SampleModel("stan1_0s", stan1_0) | ||
rc1_0s = stan_sample(m1_0s; sig_figs=18, num_samples=9000, data) | ||
|
||
if success(rc1_0s) | ||
sdf1_0s = read_summary(m1_0s) | ||
sdf1_0s[[17, 18, 19, 21, 22, 25], :] |> display | ||
println() | ||
end | ||
|
||
m2_0s = SampleModel("stan2_0s", stan2_0) | ||
rc2_0s = stan_sample(m2_0s; num_samples=9000, data) | ||
|
||
if success(rc2_0s) | ||
sdf2_0s = read_summary(m2_0s) | ||
ss2_0s = describe(m2_0s) | ||
ss2_0s |> display | ||
end | ||
|
||
nd = read_samples(m2_0s, :nesteddataframe) | ||
@test size(nd) == (36000, 4) | ||
println() | ||
|
||
@testset "array()" begin | ||
for i in 1:10 | ||
@test nd.Omega[i] == array(nd, :Omega)[:, :, i] | ||
end | ||
@test ss2_0s["sigma[1]", "mean"] ≈ 1.2 atol=0.5 | ||
end | ||
println() |