Skip to content

StepOITD/SegmentationNetworks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

TODO Lists

  • FCN
  • PSPNet
  • Deeplab v1
  • Deeplab v2
  • Deeplab v3
  • Deeplab v3+
  • HRNet
  • U-net (Pix2Pix)
  • Pix2PixHD
  • Deformable Convolution v1
  • Deformable Convolution v2
  • BiSeNet

Summary

FCN-Fully Connected Network

VGG Backbones

32x down sampling

Using 1/8, 1/16, 1/32 sizes of feature maps from 3th, 4th, 5th downsampling of VGG feature map

Upsampling method: Transposed Convolution k=3, s=2, p=1, d=1 out_padding=1

BCEWithLogitsLoss

PSPNet - Pyramid Sence Parsing Net

Resnet34 Backbone

8x downsampling

using pooling window size of [1,2,3,6]

do AdaptiveAvgPool on last feature map

3 times (2**3=8) upsampling

Auxiliary loss & BCEWithLogitsLoss

Deeplab v1

Resnet34 Backbone

Stem 4x down sample

Res Layers 2x downsample

Total 8x downsample

Using Atrous Convolution/Dilated Convolution

CRF Conditional Random Field (Wasted in v3)

Deeplab v2

add ASPP Atrous Spatial Pyramid Pooling: using multiple Atrous Convolution replace pooling and concatresults

Deeplab v3

using multi-grids in res layer5 for de-griding

modifications on ASPP

Deeplab v3+

add a decoder to upsample results to the original size of input image

Upsample method: bilinear

Pix2PixHD

Too much

See https://github.com/NVIDIA/pix2pixHD

BiSeNet

Spatial Path (ResNet) + Attention Refinement Module (ARM) => Context Path

Feature Fusion Module (FFM)

About

Classic Segmentation Network Architectures

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages