1st Place Solution for MeViS Track in CVPR 2024 PVUW Workshop: Motion Expression guided Video Segmentation
Mingqi Gao1,4,+, Jingnan Luo2,+, Jinyu Yang1,*, Jungong Han3,4, Feng Zheng1,2,*
1 Tapall.ai 2 Southern University of Science and Technology 3 University of Sheffield 4 University of Warwick
+ Equal Contributions, * Corresponding Authors
📃 Technical Report 🔖 Awesome Work List in Video Object Segmentation
We test the code in the following environments, other versions may also be compatible: Python=3.9, PyTorch=1.10.1, CUDA=11.3
pip install -r requirements.txt
pip install 'git+https://github.com/facebookresearch/fvcore'
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
cd models/ops
python setup.py build install
cd ../..
- Download MUTR's checkpoint from HERE (Swin-L, joint-training on Ref-COCO series and Ref-YouTube-VOS).
- Run following commands to fine-tune MUTR on MeViS:
python -m torch.distributed.launch \
--nproc_per_node 1 \ # num of gpus during training
--master_port 10010 \
--use_env train.py \
--with_box_refine \
--binary \
--dataset_file mevis \
--epochs 2 \
--lr_drop 1 \
--resume [MUTR checkpoint] \
--output_dir [output path] \
--mevis_path [MeViS path] \
--backbone swin_l_p4w7
Please note that different num of gpus lead to different scores (as discussed HERE).
Our checkpoint is available on Google Drive.
python inference_mevis.py \
--with_box_refine \
--binary \
--output_dir [output path] \
--resume [checkpoint path] \
--ngpu 1 \
--batch_size 1 \
--backbone swin_l_p4w7 \
--mevis_path [MeViS path] \
--split valid \
--sub_video_len 30
If you find our solution useful for your research, please consider citing with this BibTeX:
@misc{gao20241st,
title={1st Place Solution for MeViS Track in CVPR 2024 PVUW Workshop: Motion Expression guided Video Segmentation},
author={Mingqi Gao and Jingnan Luo and Jinyu Yang and Jungong Han and Feng Zheng},
year={2024},
eprint={2406.07043},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
The solution is based on MUTR and MeViS. Thanks for the authors for their efforts.