the pytorch version of cyclegan
- CUDA 8.0+
- pytorch 0.3.1
- torchvision
- Download a cycleGAN dataset (e.g.maps):
bash ./datasets/download_cyclegan_dataset.sh maps
python cycleGAN.py --data_root 'your data directory'
From top to bottom: A-->fake_B-->recon_A + ident_B; B-->fake_A-->recon_B + ident_A
[1]Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
@inproceedings{CycleGAN2017,
title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
booktitle={Computer Vision (ICCV), 2017 IEEE International Conference on},
year={2017}
}