Skip to content

Code for CVPR 2021 paper: Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

License

Notifications You must be signed in to change notification settings

Thinklab-SJTU/DCL_RetinaNet_Tensorflow

Repository files navigation

Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

License arXiv

Abstract

This repo is based on Focal Loss for Dense Object Detection, and it is completed by YangXue.

We also recommend a tensorflow-based rotation detection benchmark, which is led by YangXue.

Techniques:

Pipeline

5

Latest Performance

DOTA1.0 (Task1)

Model Backbone Training data Val data mAP Model Link Anchor Angle Pred. Reg. Loss Angle Range lr schd Data Augmentation GPU Image/GPU Configs
RetinaNet-H ResNet50_v1d 600->800 DOTA1.0 trainval DOTA1.0 test 64.17 Baidu Drive (j5l0) H Reg. smooth L1 180 2x × 3X GeForce RTX 2080 Ti 1 cfgs_res50_dota_v15.py
RetinaNet-CSL ResNet50_v1 600->800 DOTA1.0 trainval DOTA1.0 test 65.69 Baidu Drive (kgr3) H Cls.: Gaussian (r=6, w=1) smooth L1 180 2x × 3X GeForce RTX 2080 Ti 1 cfgs_res50_dota_v1.py
RetinaNet-DCL ResNet50_v1 600->800 DOTA1.0 trainval DOTA1.0 test 67.39 Baidu Drive (p9tu) H Cls.: BCL (w=180/256) smooth L1 180 2x × 3X GeForce RTX 2080 Ti 1 cfgs_res50_dota_dcl_v5.py
RetinaNet-DCL ResNet50_v1 600->800 DOTA1.0 trainval DOTA1.0 test 67.02 Baidu Drive (mcfg) H Cls.: GCL (w=180/256) smooth L1 180 2x × 3X GeForce RTX 2080 Ti 1 cfgs_res50_dota_dcl_v10.py
RetinaNet-DCL ResNet152_v1 600->MS DOTA1.0 trainval DOTA1.0 test 73.88 Baidu Drive (a7du) H Cls.: BCL (w=180/256) smooth L1 180 2x 3X GeForce RTX 2080 Ti 1 cfgs_res152_dota_dcl_v1.py
Refine-DCL ResNet50_v1 600->800 DOTA1.0 trainval DOTA1.0 test 70.63 Baidu Drive (6bv5) H->R Cls.: BCL (w=180/256) iou-smooth L1 90->180 2x × 3X GeForce RTX 2080 Ti 1 cfgs_res50_dota_refine_dcl_v1.py
R3Det-DCL ResNet50_v1 600->800 DOTA1.0 trainval DOTA1.0 test 71.21 Baidu Drive (jueq) H->R Cls.: BCL (w=180/256) iou-smooth L1 90->180 2x × 3X GeForce RTX 2080 Ti 1 cfgs_res50_dota_r3det_dcl_v1.py
R3Det-DCL ResNet152_v1 600->MS (+Flip) DOTA1.0 trainval DOTA1.0 test 76.70 (+0.27) Baidu Drive (2iov) H->R Cls.: BCL (w=180/256) iou-smooth L1 90->180 4x 4X GeForce RTX 2080 Ti 1 cfgs_res152_dota_r3det_dcl_v1.py

Visualization

1

My Development Environment

docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3
1、python3.5 (anaconda recommend)
2、cuda 10.0
3、opencv(cv2)
4、tfplot 0.2.0 (optional)
5、tensorflow-gpu 1.13

Download Model

Pretrain weights

1、Please download resnet50_v1, resnet101_v1, resnet152_v1, efficientnet, mobilenet_v2 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、(Recommend in this repo) Or you can choose to use a better backbone (resnet_v1d), refer to gluon2TF.

Compile

cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)

cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace

Train

1、If you want to train your own data, please note:

(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/label_dict.py     
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py  

2、Make tfrecord
For DOTA dataset:

cd $PATH_ROOT/data/io/DOTA
python data_crop.py
cd $PATH_ROOT/data/io/  
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/' 
                                   --xml_dir='labeltxt'
                                   --image_dir='images'
                                   --save_name='train' 
                                   --img_format='.png' 
                                   --dataset='DOTA'

3、Multi-gpu train

cd $PATH_ROOT/tools
python multi_gpu_train_dcl.py

Test

cd $PATH_ROOT/tools
python test_dota_dcl_ms.py --test_dir='/PATH/TO/IMAGES/'  
                           --gpus=0,1,2,3,4,5,6,7  
                           -ms (multi-scale testing, optional)
                           -s (visualization, optional)

Notice: In order to set the breakpoint conveniently, the read and write mode of the file is' a+'. If the model of the same #VERSION needs to be tested again, the original test results need to be deleted.

Feature Visualization

cd $PATH_ROOT/tsne
python feature_extract_dcl.py
python tsne.py
cd $PATH_ROOT/tsne/dcl_log
tensorboard --logdir=.

6

Tensorboard

cd $PATH_ROOT/output/summary
tensorboard --logdir=.

3

4

Citation

If this is useful for your research, please consider cite.

@article{yang2020dense,
    title={Dense Label Encoding for Boundary Discontinuity Free Rotation Detection},
    author={Yang, Xue and Hou, Liping and Zhou, Yue and Wang, Wentao and Yan, Junchi},
    journal={arXiv preprint arXiv:2011.09670},
    year={2020}
}

@article{yang2020arbitrary,
    title={Arbitrary-Oriented Object Detection with Circular Smooth Label},
    author={Yang, Xue and Yan, Junchi},
    journal={European Conference on Computer Vision (ECCV)},
    year={2020}
    organization={Springer}
}

@article{yang2019r3det,
    title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
    author={Yang, Xue and Yan, Junchi and Feng, Ziming and He, Tao},
    journal={arXiv preprint arXiv:1908.05612},
    year={2019}
}

@inproceedings{xia2018dota,
    title={DOTA: A large-scale dataset for object detection in aerial images},
    author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    pages={3974--3983},
    year={2018}
}

Reference

1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet

About

Code for CVPR 2021 paper: Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages