A spaCy wrapper of OpenTapioca for named entity linking on Wikidata.
pip install spacyopentapioca
or
git clone https://github.com/UB-Mannheim/spacyopentapioca
cd spacyopentapioca/
pip install .
After installation the OpenTapioca pipeline can be used without any other pipelines:
import spacy
nlp = spacy.blank("en")
nlp.add_pipe('opentapioca')
doc = nlp("Christian Drosten works in Germany.")
for span in doc.ents:
print((span.text, span.kb_id_, span.label_, span._.description, span._.score))
('Christian Drosten', 'Q1079331', 'PERSON', 'German virologist and university teacher', 3.6533377082098895)
('Germany', 'Q183', 'LOC', 'sovereign state in Central Europe', 2.1099332471902863)
The types and aliases are also available:
for span in doc.ents:
print((span._.types, span._.aliases[0:5]))
({'Q43229': False, 'Q618123': False, 'Q5': True, 'P2427': False, 'P1566': False, 'P496': True}, ['كريستيان دروستين', 'Крістіан Дростен', 'Christian Heinrich Maria Drosten', 'کریستین دروستن', '크리스티안 드로스텐'])
({'Q43229': True, 'Q618123': True, 'Q5': False, 'P2427': False, 'P1566': True, 'P496': False}, ['IJalimani', 'R. F. A.', 'Alemania', '도이칠란트', 'Germaniya'])
The Wikidata QIDs are attached to tokens:
for token in doc:
print((token.text, token.ent_kb_id_))
('Christian', 'Q1079331')
('Drosten', 'Q1079331')
('works', '')
('in', '')
('Germany', 'Q183')
('.', '')
The raw response of the OpenTapioca API can be accessed in the doc- and span-objects:
raw_annotations1 = doc._.annotations
raw_annotations2 = [span._.annotations for span in doc.ents]
The partial metadata for the response returned by the OpenTapioca API is
doc._.metadata
All span-extensions are:
span._.annotations
span._.description
span._.aliases
span._.rank
span._.score
span._.types
span._.label
span._.extra_aliases
span._.nb_sitelinks
span._.nb_statements
Note that spaCyOpenTapioca does a tiny processing of entities appearing in doc.ents
. All entities returned by OpenTapioca can be found in doc.spans['all_entities_opentapioca']
.
Batched asynchronous requests to the OpenTapioca API via nlp.pipe(List[str])
:
import spacy
nlp = spacy.blank("en")
nlp.add_pipe('opentapioca')
docs = nlp.pipe(
[
"Christian Drosten works in Germany.",
"Momofuku Ando was born in Japan.".
]
)
for doc in docs:
for span in doc.ents:
print((span.text, span.kb_id_, span.label_, span._.description, span._.score))
('Christian Drosten', 'Q1079331', 'PERSON', 'German virologist and university teacher', 3.6533377082098895)
('Germany', 'Q183', 'LOC', 'sovereign state in Central Europe', 2.1099332471902863)
('Momofuku Ando', 'Q317858', 'PERSON', 'Taiwanese-Japanese businessman', 3.6012208212234302)
('Japan', 'Q17', 'LOC', 'sovereign state in East Asia, situated on an archipelago of five main and over 6,800 smaller islands', 2.349944834167907)
If OpenTapioca is deployed locally, specify the URL of the new OpenTapioca API in the config:
import spacy
nlp = spacy.blank("en")
nlp.add_pipe('opentapioca', config={"url": OpenTapiocaAPI})
doc = nlp("Christian Drosten works in Germany.")
NEL vizualization is added to spaCy via pull request 9199 for issue 9129. It is supported by spaCy >= 3.1.4.
Use manual option in displaCy:
import spacy
nlp = spacy.blank("en")
nlp.add_pipe('opentapioca')
doc = nlp("Christian Drosten works\n in Charité, Germany.")
params = {"text": doc.text,
"ents": [{"start": ent.start_char,
"end": ent.end_char,
"label": ent.label_,
"kb_id": ent.kb_id_,
"kb_url": "https://www.wikidata.org/entity/" + ent.kb_id_}
for ent in doc.ents],
"title": None}
spacy.displacy.serve(params, style="ent", manual=True)
The visualizer is serving on http://0.0.0.0:5000
In Jupyter Notebook replace spacy.displacy.serve
by spacy.displacy.render
.