Official implementation of the ECCV'24 paper Isomorphic Pruning for Vision Models.
Isomorphic Pruning has been integrated into Torch-Pruning (v1.4.1).
Isomorphic Pruning for Vision Models
Gongfan Fang, Xinyin Ma, Michael Bi Mi, Xinchao Wang
Learning and Vision Lab, National University of Singapore
pip install -r requirements.txt
Please prepare the ImageNet dataset under ./data/imagenet
as follows:
data
├── imagenet
│ ├── train
│ │ ├── n01440764
│ │ ├── n01443537
│ │ ├── n01484850
│ │ ├── n01491361
│ └── val
│ │ ├── n01440764
│ │ ├── n01443537
│ │ ├── n01484850
│ │ ├── n01491361
Model | #MACs | #Params | Top-1 Acc. (%) | Checkpoints |
---|---|---|---|---|
DeiT-4.2G | 4.16 G | 20.69 M | 82.41 | Download |
DeiT-2.6G | 2.61 G | 13.07 M | 81.13 | Download |
DeiT-1.2G | 1.21 G | 5.74 M | 77.50 | Download |
DeiT-0.6G | 0.62 G | 3.08 M | 72.60 | Download |
ConvNext-S-8.5G | 8.48 G | 47.36 M | 83.17 | Download |
ConvNext-T-4.2G | 4.19 G | 25.32 M | 82.19 | Download |
The full list of pruned models can be found here
mkdir pretrained && cd pretrained
wget https://github.com/VainF/Isomorphic-Pruning/releases/download/v0.1/deit_4.2G_isomorphic.pth
pretrained
├── convnext_small_8.5G_isomorphic.pth
├── convnext_tiny_4.2G_isomorphic.pth
├── deit_0.6G_isomorphic.pth
├── deit_1.2G_isomorphic.pth
├── deit_2.6G_isomorphic.pth
└── deit_4.2G_isomorphic.pth
You can evaluate the pruned models using the following command:
python evaluate.py --model pretrained/deit_4.2G_isomorphic.pth --interpolation bicubic
MACs: 4.1626 G, Params: 20.6943 M
Evaluating pretrained/deit_4.2G_isomorphic.pth...
100%|███████████████| 782/782 [01:57<00:00, 6.68it/s]
Accuracy: 0.8241, Loss: 0.8036
Evaluate the performance of the pre-trained models from Timm on ImageNet validation set.
bash scripts/evaluation/deit_small_distilled_patch16_224.fb_in1k.sh
MACs: 4.6391 G, Params: 22.4364 M
Evaluating deit_small_distilled_patch16_224.fb_in1k...
100%|█████████████| 782/782 [02:00<00:00, 6.51it/s]
Accuracy: 0.8117, Loss: 0.7511
Perform isomorphic pruning on the pre-trained models. We use data-driven method to estimate the importance of parameters. It will accumulate the importance scores over multiple batches.
bash scripts/pruning/deit_4.2G.sh
Summary:
MACs: 17.69 G => 4.17 G
Params: 87.34 M => 20.72 M
Saving the pruned model to output/pruned/deit_4.2G.pth...
Finetune the pruned model and save the intermediate/latest/best checkpoints under output/finetuned
.
bash scripts/finetuning/deit_4.2G.sh
The pruned model will be saved as a .pth
file with the model definition. We can directly load the .pth
to obain the pruned model. You can also pass the timm model name to the script to download the pre-trained model and evaluate it.
# bilinear for ResNet and bicubic for other models
python evaluate.py --model PATH_TO_PRUNED_MODEL --interpolation bicubic
The ConvNext models in our paper were finetuned using the official implementation. We provide an isolated script convnext_train.py
for ConvNext finetuning and will unify the training scripts in the future.
This implementation is based on Timm and Torchvision Reference.
@article{fang2024isomorphic,
title={Isomorphic Pruning for Vision Models},
author={Fang, Gongfan and Ma, Xinyin Tan and Mi, Michael Bi and Wang, Xinchao},
journal={arXiv preprint arXiv:2407.04616},
year={2024}
}