-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo.py
124 lines (95 loc) · 4.61 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
from gradio_image_prompter import ImagePrompter
from detectron2.config import LazyConfig, instantiate
from detectron2.checkpoint import DetectionCheckpointer
import cv2
import numpy as np
import torch
import os
model_choice = {
'SAM': '../2025_ICLR_SEMat/checkpoints/SAM_240911-2030_247_model_final.pth',
'HQ-SAM': '../2025_ICLR_SEMat/checkpoints/HQ-SAM_240907-1324_222_model_final.pth',
'SAM2': '../2025_ICLR_SEMat/checkpoints/SAM2_240912-1743_251_model_0053999.pth'
}
def load_model(model_type='HQ-SAM'):
assert model_type in model_choice.keys()
config_path = './configs/SEMat_{}.py'.format(model_type)
cfg = LazyConfig.load(config_path)
if hasattr(cfg.model.sam_model, 'ckpt_path'):
cfg.model.sam_model.ckpt_path = None
else:
cfg.model.sam_model.checkpoint = None
model = instantiate(cfg.model)
if model.lora_rank is not None:
model.init_lora()
model.to(cfg.train.device)
DetectionCheckpointer(model).load(model_choice[model_type])
model.eval()
return model, model_type
def transform_image_bbox(prompts):
if len(prompts["points"]) != 1:
raise gr.Error("Please input only one BBox.", duration=5)
[[x1, y1, idx_3, x2, y2, idx_6]] = prompts["points"]
if idx_3 != 2 or idx_6 != 3:
raise gr.Error("Please input BBox instead of point.", duration=5)
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
img = prompts["image"]
ori_H, ori_W, _ = img.shape
scale = 1024 * 1.0 / max(ori_H, ori_W)
new_H, new_W = ori_H * scale, ori_W * scale
new_W = int(new_W + 0.5)
new_H = int(new_H + 0.5)
img = cv2.resize(img, (new_W, new_H), interpolation=cv2.INTER_LINEAR)
padding = np.zeros([1024, 1024, 3], dtype=img.dtype)
padding[: new_H, : new_W, :] = img
img = padding
# img = img[:, :, ::-1].transpose((2, 0, 1)).astype(np.float32) / 255.0
img = img.transpose((2, 0, 1)).astype(np.float32) / 255.0
[[x1, y1, _, x2, y2, _]] = prompts["points"]
x1, y1, x2, y2 = int(x1 * scale + 0.5), int(y1 * scale + 0.5), int(x2 * scale + 0.5), int(y2 * scale + 0.5)
bbox = np.clip(np.array([[x1, y1, x2, y2]]) * 1.0, 0, 1023.0)
return img, bbox, (ori_H, ori_W), (new_H, new_W)
if __name__ == '__main__':
model, model_type = load_model()
def inference_image(prompts, input_model_type):
global model_type
global model
if input_model_type != model_type:
gr.Info('Loading SEMat of {} version.'.format(input_model_type), duration=5)
_model, _ = load_model(input_model_type)
model_type = input_model_type
model = _model
image, bbox, ori_H_W, pad_H_W = transform_image_bbox(prompts)
input_data = {
'image': torch.from_numpy(image)[None].to(model.device),
'bbox': torch.from_numpy(bbox)[None].to(model.device),
}
with torch.no_grad():
inputs = model.preprocess_inputs(input_data)
images, bbox, gt_alpha, trimap, condition = inputs['images'], inputs['bbox'], inputs['alpha'], inputs['trimap'], inputs['condition']
if model.backbone_condition:
condition_proj = model.condition_embedding(condition)
elif model.backbone_bbox_prompt is not None or model.bbox_prompt_all_block is not None:
condition_proj = bbox
else:
condition_proj = None
low_res_masks, pred_alphas, pred_trimap, sam_hq_matting_token = model.forward_samhq_and_matting_decoder(images, bbox, condition_proj)
output_alpha = np.uint8(pred_alphas[0, 0][:pad_H_W[0], :pad_H_W[1], None].repeat(1, 1, 3).cpu().numpy() * 255)
return output_alpha
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=45):
img_in = ImagePrompter(type='numpy', show_label=False, label="Input Image")
with gr.Column(scale=45):
img_out = gr.Image(type='pil', label="Pred. Alpha")
with gr.Row():
with gr.Column(scale=45):
input_model_type = gr.Dropdown(list(model_choice.keys()), value='HQ-SAM', label="Trained SEMat Version")
with gr.Column(scale=45):
bt = gr.Button()
bt.click(inference_image, inputs=[img_in, input_model_type], outputs=[img_out])
# example_files = os.listdir('./demo_imgs')
# example_files.sort()
# # example_files = [{'image': cv2.imread(os.path.join('./demo_imgs', filename)), 'points': None} for filename in example_files]
# examples = gr.Examples(examples=example_files, inputs=[img_in])
demo.launch()