In this paper, we propose the COCO-Matting dataset and SEMat framework to revamp training datasets, network architecture, and training objectives. Solving the problem of inappropriate synthetic training data, unaligned features and mattes from a frozen SAM, and end-to-end matting loss lacking generalization, we greatly improve the interactive matting performance on diverse datasets.
🌞 COCO-Matting
Our COCO-Matting features both natural and complex scenes. Training SEMat with COCO-Matting enables a substantial lead on HIM2K than using RefMatte and P3M-10K.
✨ SEMat
Our SEMat trained on COCO-Matting significantly outperforms the SoTA methods like MAM and SmartMat on several datasets, especially in transparency, details, and semantics.
To use our gradio demo locally:
python demo.py
You can also try our online demo.
-
Create a conda virtual env and activate it.
conda create -n SEMat python==3.8.8 conda activate SEMat
-
Install packages.
cd path/to/SEMat pip install -r requirements.txt
-
Install detectron2 , follow its documentation. For instance:
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
-
Download the testing dataset: AIM-500, RefMatte-RW100, AM-2K, P3M-500, RWP-636, and SIM
-
Modify the dataset path in line 4-12 of
./configs/semantic_enhanced_matting/dataloader.py
-
The data folder structure should look like this:
path/to/datasets
├── AIM-500
│ ├── mask
│ ├── original
│ ├── ...
├── RefMatte_RW_100
│ ├── image
│ ├── mask
│ ├── ...
├── AM-2K
│ ├── validation
│ │ ├── mask
│ │ ├── original
│ │ ├── ...
├── P3M-10k
│ ├── validation
│ │ ├── P3M-500-NP
│ │ │ ├── mask
│ │ │ ├── original_image
│ │ │ ├── ...
├── RealWorldPortrait-636
│ ├── alpha
│ ├── image
│ ├── ...
├── SIMD
│ ├── generated_testset
│ │ ├── defocus
│ │ │ ├── alpha
│ │ │ ├── merged
│ │ ├── ...
Please note that:
- The
generated_testset
in SIMD should be generated following SIM
Download the trained model of SEMat (SAM) or SEMat (HQ-SAM) or SEMat (SAM2) and put them in the checkpoints
folder. Then, you can inference with different SEMat versions:
Choose one testing dataset by replace [dataset]
with RW100 / AIM500 / AM2K / P3M500 / RWP636 / SIM
in the following commands.
- SEMat (SAM)
python main.py --config-file configs/SEMat_SAM.py --eval_dataset [dataset] --init_from ./checkpoints/SEMat_SAM.pth --num-gpus 1 --eval-only
- SEMat (HQ-SAM)
python main.py --config-file configs/SEMat_HQ-SAM.py --eval_dataset [dataset] --init_from ./checkpoints/SEMat_HQ-SAM.pth --num-gpus 1 --eval-only
- SEMat (SAM2)
python main.py --config-file configs/SEMat_SAM2.py --eval_dataset [dataset] --init_from ./checkpoints/SEMat_SAM2.pth --num-gpus 1 --eval-only
Our COCO-Matting is available now. We only provide the concatenated trimap and alpha in COCO-Matting_trimap_alpha
. Images can be downloaded from train2017.zip and unlabeled2017.zip. The image-label correspondence can be obtained from the json file we provided.
- Hugging Face Demo.
- Release our COCO-Matting dataset.
- Testing on the HIM2K dataset.
- Release training codes.
Thanks Detectron2, ViTMatte, DiffMatte, GroundingDINO, SAM, HQ-SAM and SAM2 for their public code and released models.
If you find this project useful, please consider citing:
@article{SEMat,
title={Towards Natural Image Matting in the Wild via Real-Scenario Prior},
author={Xia, Ruihao and Liang, Yu and Jiang, Peng-Tao and Zhang, Hao and Sun, Qianru and Tang, Yang and Li, Bo and Zhou, Pan},
journal={arXiv:2410.06593},
year={2024}
}