Skip to content

Commit

Permalink
Eagle speculative decoding part 4: Add EAGLE2 worker (sgl-project#2150)
Browse files Browse the repository at this point in the history
Co-authored-by: kavioyu <[email protected]>
Co-authored-by: Lianmin Zheng <[email protected]>
  • Loading branch information
3 people authored and YAMY1234 committed Jan 2, 2025
1 parent db99dc9 commit 371305b
Show file tree
Hide file tree
Showing 6 changed files with 1,212 additions and 0 deletions.
37 changes: 37 additions & 0 deletions examples/runtime/engine/EAGLE_offline_batch_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
import sglang as sgl


def main():
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]

# Create a sampling params object.
sampling_params = {"temperature": 0, "max_new_tokens": 30}

# Create an LLM.
llm = sgl.Engine(
model_path="meta-llama/Llama-2-7b-chat-hf",
speculative_algorithm="EAGLE",
speculative_draft_model_path="lmzheng/sglang-EAGLE-llama2-chat-7B",
speculative_num_steps=3,
speculative_eagle_topk=4,
speculative_num_draft_tokens=16,
)

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for prompt, output in zip(prompts, outputs):
print("===============================")
print(f"Prompt: {prompt}\nGenerated text: {output['text']}")


# The __main__ condition is necessary here because we use "spawn" to create subprocesses
# Spawn starts a fresh program every time, if there is no __main__, it will run into infinite loop to keep spawning processes from sgl.Engine
if __name__ == "__main__":
main()
347 changes: 347 additions & 0 deletions python/sglang/srt/speculative/build_eagle_tree.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,347 @@
import cutex
import torch

# parent_table [bs,topk*depth+)]
# selected_index [bs,draft_token_num-1)]
# verified_seq_len [bs]
# tree_mask [draft_token*(seq_len[0]+draft_token) | draft_token*(seq_len[1]+draft_token) | ..] = [sum(verified_seq_len)*draft_token+bs*draft_token*draft_token]
# positions [bs*draft_token]
# retrive_index [b, draft_token, depth+2]
kernels = cutex.SourceModule(
"""
//cuda
__global__ void build_tree(Tensor<long, 2> parent_list, Tensor<long, 2> selected_index, Tensor<int, 1> verified_seq_len,
Tensor<bool, 1> tree_mask, Tensor<long, 1> positions, Tensor<long, 3> retrive_index, int topk, int depth, int draft_token_num) {
int bid = blockIdx.x;
int tid = threadIdx.x;
if (tid >= draft_token_num){
return;
}
int seq_tree_idx = draft_token_num * draft_token_num * bid;
for(int i=0; i<bid; i++){
seq_tree_idx += verified_seq_len[i] * draft_token_num;
}
int seq_len = verified_seq_len[bid];
int token_tree_idx = seq_tree_idx + (seq_len+draft_token_num)*tid + seq_len + 1;
for(int i=0; i<draft_token_num-1; i++){
tree_mask[token_tree_idx+i] = false;
}
int position = 0;
if (tid==0){
positions[bid*draft_token_num] = seq_len;
retrive_index[bid][0][0] = bid * draft_token_num;
return;
}
int depends_order[10];
int cur_position = tid-1;
while(true){
depends_order[position] = cur_position+1;
position += 1;
tree_mask[token_tree_idx+cur_position] = true;
int parent_tb_idx = selected_index[bid][cur_position]/topk;
if(parent_tb_idx==0){
break;
}
int token_idx = parent_list[bid][parent_tb_idx];
for(cur_position=0; cur_position<draft_token_num;cur_position++){
if(selected_index[bid][cur_position]==token_idx){
break;
}
}
}
positions[bid*draft_token_num+tid] = position + seq_len;
int is_leaf = 0;
for(int i=1;i<draft_token_num;i++){
if(tree_mask[seq_tree_idx + i * (draft_token_num+seq_len) + seq_len + tid])
{
is_leaf ++;
}
}
if(is_leaf==1){
for(int i=0; i<position; i++){
retrive_index[bid][tid][position-i] = depends_order[i] + bid * draft_token_num;
}
retrive_index[bid][tid][0] = bid*draft_token_num;
}
}
//!cuda
""",
float_bits=16, # change to 16 to use half precision as `float` type in the above source code.
boundscheck=True, # turning on for debug and off for performance (to use full threads of a block), default is on.
)


def build_tree_kernel(parent_list, top_score_index, seq_lens, topk, depth, draft_token):
bs = seq_lens.numel()
device = parent_list.device
tree_mask = torch.full(
(torch.sum(seq_lens).item() * draft_token + draft_token * draft_token * bs,),
True,
device=device,
)
retrive_index = torch.full(
(bs, draft_token, depth + 2), -1, device=device, dtype=torch.long
)
positions = torch.empty((bs * draft_token,), device=device, dtype=torch.long)

kernels.build_tree(
parent_list,
top_score_index,
seq_lens.to(torch.int32),
tree_mask,
positions,
retrive_index,
topk,
depth,
draft_token,
grid=(bs, 1, 1),
block=(64, 1, 1),
)
index = retrive_index.sum(dim=-1) != -depth - 2
cum_len = torch.cumsum(torch.sum(index, dim=-1), dim=-1)
retrive_cum_len = torch.zeros(
(cum_len.numel() + 1,), dtype=torch.int32, device="cuda"
)
retrive_cum_len[1:] = cum_len
retrive_index = retrive_index[index]
return tree_mask, positions, retrive_index, retrive_cum_len


if __name__ == "__main__":

def findp(p_i, index, parent_list):
pos = index // 10
index_list = index.tolist()
parent_list = parent_list.tolist()
res = [p_i]
while True:
p = pos[p_i]
if p == 0:
break
token_idx = parent_list[p]
p_i = index_list.index(token_idx)
res.append(p_i)
return res

def create_mask(seq_len, draft_token, index, parent_list, max_depth):
mask = []
positions = []
retrive_index = []
for i, lens in enumerate(seq_len.tolist()):
first_mask = torch.full((lens + draft_token,), True)
first_mask[-(draft_token - 1) :] = False
positions.append(lens)
mask.append(first_mask)
seq_order = []
first_index = torch.Tensor([0] + [-1] * (depth + 1)).cuda().to(torch.long)
r_index = [first_index]
for j in range(draft_token - 1):
mask.append(torch.full((lens + 1,), True))
idx = findp(j, index, parent_list)

seq_order.append(idx)
positions.append(len(idx) + seq_len)
t = torch.full((draft_token - 1,), False)
t[idx] = True
mask.append(t)

for i in range(1, draft_token - 1):
is_leaf = 0
for j in range(draft_token - 1):
if i in seq_order[j]:
is_leaf += 1

if is_leaf == 1:
order_list = [0] + [x + 1 for x in seq_order[i][::-1]]
for _ in range(max_depth + 1 - len(seq_order[i])):
order_list.append(-1)
order = torch.Tensor(order_list).cuda().to(torch.long)
r_index.append(order)
retrive_index.append(torch.stack(r_index))

return (
torch.cat(mask).cuda(),
torch.Tensor(positions).cuda().to(torch.long),
torch.stack(retrive_index),
)

index = (
torch.Tensor(
[
0,
1,
2,
3,
10,
11,
12,
13,
20,
21,
22,
30,
110,
130,
150,
160,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
230,
310,
311,
312,
313,
314,
315,
316,
317,
320,
321,
322,
330,
360,
380,
390,
410,
411,
412,
413,
414,
415,
416,
417,
418,
419,
420,
421,
422,
423,
430,
431,
440,
441,
460,
470,
]
)
.to(torch.long)
.cuda()
)

parent_list = (
torch.Tensor(
[
-1,
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
20,
30,
21,
13,
22,
40,
23,
110,
130,
160,
150,
190,
120,
111,
121,
200,
180,
210,
211,
212,
213,
214,
215,
216,
220,
230,
217,
310,
311,
312,
313,
320,
314,
321,
315,
316,
317,
]
)
.to(torch.long)
.cuda()
)

verified_seq_len = torch.Tensor([47]).to(torch.long).cuda()
bs = verified_seq_len.shape[0]
topk = 10
depth = 5 # depth <= 10
draft_token = 64

tree_mask = torch.full(
(
torch.sum(verified_seq_len).item() * draft_token
+ draft_token * draft_token * bs,
),
True,
).cuda()
retrive_index = torch.full(
(bs, draft_token, depth + 2), -1, device="cuda", dtype=torch.long
)
positions = torch.empty((bs * draft_token,), device="cuda", dtype=torch.long)

kernels.build_tree(
parent_list.unsqueeze(0),
index.unsqueeze(0),
verified_seq_len,
tree_mask,
positions,
retrive_index,
topk,
depth,
draft_token,
grid=(bs, 1, 1),
block=(64, 1, 1),
)
retrive_index = retrive_index[retrive_index.sum(dim=-1) != -depth - 2]

c_mask, c_positions, c_retive_index = create_mask(
verified_seq_len, draft_token, index, parent_list, depth
)

assert torch.allclose(tree_mask, c_mask), "tree mask has error."
assert torch.allclose(positions, c_positions), "positions has error."
assert torch.allclose(retrive_index, c_retive_index), "retrive_index has error."
Loading

0 comments on commit 371305b

Please sign in to comment.