forked from sgl-project/sglang
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Eagle speculative decoding part 4: Add EAGLE2 worker (sgl-project#2150)
Co-authored-by: kavioyu <[email protected]> Co-authored-by: Lianmin Zheng <[email protected]>
- Loading branch information
Showing
6 changed files
with
1,212 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
import sglang as sgl | ||
|
||
|
||
def main(): | ||
# Sample prompts. | ||
prompts = [ | ||
"Hello, my name is", | ||
"The president of the United States is", | ||
"The capital of France is", | ||
"The future of AI is", | ||
] | ||
|
||
# Create a sampling params object. | ||
sampling_params = {"temperature": 0, "max_new_tokens": 30} | ||
|
||
# Create an LLM. | ||
llm = sgl.Engine( | ||
model_path="meta-llama/Llama-2-7b-chat-hf", | ||
speculative_algorithm="EAGLE", | ||
speculative_draft_model_path="lmzheng/sglang-EAGLE-llama2-chat-7B", | ||
speculative_num_steps=3, | ||
speculative_eagle_topk=4, | ||
speculative_num_draft_tokens=16, | ||
) | ||
|
||
outputs = llm.generate(prompts, sampling_params) | ||
|
||
# Print the outputs. | ||
for prompt, output in zip(prompts, outputs): | ||
print("===============================") | ||
print(f"Prompt: {prompt}\nGenerated text: {output['text']}") | ||
|
||
|
||
# The __main__ condition is necessary here because we use "spawn" to create subprocesses | ||
# Spawn starts a fresh program every time, if there is no __main__, it will run into infinite loop to keep spawning processes from sgl.Engine | ||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,347 @@ | ||
import cutex | ||
import torch | ||
|
||
# parent_table [bs,topk*depth+)] | ||
# selected_index [bs,draft_token_num-1)] | ||
# verified_seq_len [bs] | ||
# tree_mask [draft_token*(seq_len[0]+draft_token) | draft_token*(seq_len[1]+draft_token) | ..] = [sum(verified_seq_len)*draft_token+bs*draft_token*draft_token] | ||
# positions [bs*draft_token] | ||
# retrive_index [b, draft_token, depth+2] | ||
kernels = cutex.SourceModule( | ||
""" | ||
//cuda | ||
__global__ void build_tree(Tensor<long, 2> parent_list, Tensor<long, 2> selected_index, Tensor<int, 1> verified_seq_len, | ||
Tensor<bool, 1> tree_mask, Tensor<long, 1> positions, Tensor<long, 3> retrive_index, int topk, int depth, int draft_token_num) { | ||
int bid = blockIdx.x; | ||
int tid = threadIdx.x; | ||
if (tid >= draft_token_num){ | ||
return; | ||
} | ||
int seq_tree_idx = draft_token_num * draft_token_num * bid; | ||
for(int i=0; i<bid; i++){ | ||
seq_tree_idx += verified_seq_len[i] * draft_token_num; | ||
} | ||
int seq_len = verified_seq_len[bid]; | ||
int token_tree_idx = seq_tree_idx + (seq_len+draft_token_num)*tid + seq_len + 1; | ||
for(int i=0; i<draft_token_num-1; i++){ | ||
tree_mask[token_tree_idx+i] = false; | ||
} | ||
int position = 0; | ||
if (tid==0){ | ||
positions[bid*draft_token_num] = seq_len; | ||
retrive_index[bid][0][0] = bid * draft_token_num; | ||
return; | ||
} | ||
int depends_order[10]; | ||
int cur_position = tid-1; | ||
while(true){ | ||
depends_order[position] = cur_position+1; | ||
position += 1; | ||
tree_mask[token_tree_idx+cur_position] = true; | ||
int parent_tb_idx = selected_index[bid][cur_position]/topk; | ||
if(parent_tb_idx==0){ | ||
break; | ||
} | ||
int token_idx = parent_list[bid][parent_tb_idx]; | ||
for(cur_position=0; cur_position<draft_token_num;cur_position++){ | ||
if(selected_index[bid][cur_position]==token_idx){ | ||
break; | ||
} | ||
} | ||
} | ||
positions[bid*draft_token_num+tid] = position + seq_len; | ||
int is_leaf = 0; | ||
for(int i=1;i<draft_token_num;i++){ | ||
if(tree_mask[seq_tree_idx + i * (draft_token_num+seq_len) + seq_len + tid]) | ||
{ | ||
is_leaf ++; | ||
} | ||
} | ||
if(is_leaf==1){ | ||
for(int i=0; i<position; i++){ | ||
retrive_index[bid][tid][position-i] = depends_order[i] + bid * draft_token_num; | ||
} | ||
retrive_index[bid][tid][0] = bid*draft_token_num; | ||
} | ||
} | ||
//!cuda | ||
""", | ||
float_bits=16, # change to 16 to use half precision as `float` type in the above source code. | ||
boundscheck=True, # turning on for debug and off for performance (to use full threads of a block), default is on. | ||
) | ||
|
||
|
||
def build_tree_kernel(parent_list, top_score_index, seq_lens, topk, depth, draft_token): | ||
bs = seq_lens.numel() | ||
device = parent_list.device | ||
tree_mask = torch.full( | ||
(torch.sum(seq_lens).item() * draft_token + draft_token * draft_token * bs,), | ||
True, | ||
device=device, | ||
) | ||
retrive_index = torch.full( | ||
(bs, draft_token, depth + 2), -1, device=device, dtype=torch.long | ||
) | ||
positions = torch.empty((bs * draft_token,), device=device, dtype=torch.long) | ||
|
||
kernels.build_tree( | ||
parent_list, | ||
top_score_index, | ||
seq_lens.to(torch.int32), | ||
tree_mask, | ||
positions, | ||
retrive_index, | ||
topk, | ||
depth, | ||
draft_token, | ||
grid=(bs, 1, 1), | ||
block=(64, 1, 1), | ||
) | ||
index = retrive_index.sum(dim=-1) != -depth - 2 | ||
cum_len = torch.cumsum(torch.sum(index, dim=-1), dim=-1) | ||
retrive_cum_len = torch.zeros( | ||
(cum_len.numel() + 1,), dtype=torch.int32, device="cuda" | ||
) | ||
retrive_cum_len[1:] = cum_len | ||
retrive_index = retrive_index[index] | ||
return tree_mask, positions, retrive_index, retrive_cum_len | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
def findp(p_i, index, parent_list): | ||
pos = index // 10 | ||
index_list = index.tolist() | ||
parent_list = parent_list.tolist() | ||
res = [p_i] | ||
while True: | ||
p = pos[p_i] | ||
if p == 0: | ||
break | ||
token_idx = parent_list[p] | ||
p_i = index_list.index(token_idx) | ||
res.append(p_i) | ||
return res | ||
|
||
def create_mask(seq_len, draft_token, index, parent_list, max_depth): | ||
mask = [] | ||
positions = [] | ||
retrive_index = [] | ||
for i, lens in enumerate(seq_len.tolist()): | ||
first_mask = torch.full((lens + draft_token,), True) | ||
first_mask[-(draft_token - 1) :] = False | ||
positions.append(lens) | ||
mask.append(first_mask) | ||
seq_order = [] | ||
first_index = torch.Tensor([0] + [-1] * (depth + 1)).cuda().to(torch.long) | ||
r_index = [first_index] | ||
for j in range(draft_token - 1): | ||
mask.append(torch.full((lens + 1,), True)) | ||
idx = findp(j, index, parent_list) | ||
|
||
seq_order.append(idx) | ||
positions.append(len(idx) + seq_len) | ||
t = torch.full((draft_token - 1,), False) | ||
t[idx] = True | ||
mask.append(t) | ||
|
||
for i in range(1, draft_token - 1): | ||
is_leaf = 0 | ||
for j in range(draft_token - 1): | ||
if i in seq_order[j]: | ||
is_leaf += 1 | ||
|
||
if is_leaf == 1: | ||
order_list = [0] + [x + 1 for x in seq_order[i][::-1]] | ||
for _ in range(max_depth + 1 - len(seq_order[i])): | ||
order_list.append(-1) | ||
order = torch.Tensor(order_list).cuda().to(torch.long) | ||
r_index.append(order) | ||
retrive_index.append(torch.stack(r_index)) | ||
|
||
return ( | ||
torch.cat(mask).cuda(), | ||
torch.Tensor(positions).cuda().to(torch.long), | ||
torch.stack(retrive_index), | ||
) | ||
|
||
index = ( | ||
torch.Tensor( | ||
[ | ||
0, | ||
1, | ||
2, | ||
3, | ||
10, | ||
11, | ||
12, | ||
13, | ||
20, | ||
21, | ||
22, | ||
30, | ||
110, | ||
130, | ||
150, | ||
160, | ||
210, | ||
211, | ||
212, | ||
213, | ||
214, | ||
215, | ||
216, | ||
217, | ||
218, | ||
219, | ||
220, | ||
230, | ||
310, | ||
311, | ||
312, | ||
313, | ||
314, | ||
315, | ||
316, | ||
317, | ||
320, | ||
321, | ||
322, | ||
330, | ||
360, | ||
380, | ||
390, | ||
410, | ||
411, | ||
412, | ||
413, | ||
414, | ||
415, | ||
416, | ||
417, | ||
418, | ||
419, | ||
420, | ||
421, | ||
422, | ||
423, | ||
430, | ||
431, | ||
440, | ||
441, | ||
460, | ||
470, | ||
] | ||
) | ||
.to(torch.long) | ||
.cuda() | ||
) | ||
|
||
parent_list = ( | ||
torch.Tensor( | ||
[ | ||
-1, | ||
0, | ||
1, | ||
2, | ||
3, | ||
4, | ||
5, | ||
6, | ||
7, | ||
8, | ||
9, | ||
10, | ||
11, | ||
12, | ||
20, | ||
30, | ||
21, | ||
13, | ||
22, | ||
40, | ||
23, | ||
110, | ||
130, | ||
160, | ||
150, | ||
190, | ||
120, | ||
111, | ||
121, | ||
200, | ||
180, | ||
210, | ||
211, | ||
212, | ||
213, | ||
214, | ||
215, | ||
216, | ||
220, | ||
230, | ||
217, | ||
310, | ||
311, | ||
312, | ||
313, | ||
320, | ||
314, | ||
321, | ||
315, | ||
316, | ||
317, | ||
] | ||
) | ||
.to(torch.long) | ||
.cuda() | ||
) | ||
|
||
verified_seq_len = torch.Tensor([47]).to(torch.long).cuda() | ||
bs = verified_seq_len.shape[0] | ||
topk = 10 | ||
depth = 5 # depth <= 10 | ||
draft_token = 64 | ||
|
||
tree_mask = torch.full( | ||
( | ||
torch.sum(verified_seq_len).item() * draft_token | ||
+ draft_token * draft_token * bs, | ||
), | ||
True, | ||
).cuda() | ||
retrive_index = torch.full( | ||
(bs, draft_token, depth + 2), -1, device="cuda", dtype=torch.long | ||
) | ||
positions = torch.empty((bs * draft_token,), device="cuda", dtype=torch.long) | ||
|
||
kernels.build_tree( | ||
parent_list.unsqueeze(0), | ||
index.unsqueeze(0), | ||
verified_seq_len, | ||
tree_mask, | ||
positions, | ||
retrive_index, | ||
topk, | ||
depth, | ||
draft_token, | ||
grid=(bs, 1, 1), | ||
block=(64, 1, 1), | ||
) | ||
retrive_index = retrive_index[retrive_index.sum(dim=-1) != -depth - 2] | ||
|
||
c_mask, c_positions, c_retive_index = create_mask( | ||
verified_seq_len, draft_token, index, parent_list, depth | ||
) | ||
|
||
assert torch.allclose(tree_mask, c_mask), "tree mask has error." | ||
assert torch.allclose(positions, c_positions), "positions has error." | ||
assert torch.allclose(retrive_index, c_retive_index), "retrive_index has error." |
Oops, something went wrong.