Skip to content

Code for "Divergence Optimization for Noisy Universal Domain Adaptation"

License

Notifications You must be signed in to change notification settings

YU1ut/Divergence-Optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Divergence Optimization for Noisy UniDA

This is a PyTorch implementation of Divergence Optimization for Noisy Universal Domain Adaptation.

Requirements

  • Python 3.8
  • PyTorch 1.6.0
  • torchvision 0.7.0
  • matplotlib
  • numpy
  • scikit-learn

Preparation

Downlaod following data:

Office

OfficeHome

VisDA

and put them in data directory as follows:

Divergence-Optimization
│   README.md
│   train.py
│   run.py
│   ...
│   
└───data
    └───amazon
    |   └───images
    └───dslr
    └───webcam
    └───Art
    |   └───Alarm_Clock
    └───Clipart
    └───Product
    └───Real
    └───visda
        └───train
        └───validation
        

Usage

Train the network with Office dataset under Noisy UniDA setting having pairflip noise (noise rate = 0.2):

python run.py --gpu 0 --dataset office --noise-type pairflip --percent 0.2

The trained model and output will be saved at result/pairflip_0.2/configs/office-train-config_opda.

For more details and parameters, please refer to --help option.

Reference codes

References

  • [1]: Qing Yu, Atsushi Hashimoto and Yoshitaka Ushiku. "Divergence Optimization for Noisy Universal Domain Adaptation", in CVPR, 2021.

About

Code for "Divergence Optimization for Noisy Universal Domain Adaptation"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages