Skip to content

YuqiYang213/semantic-segmentation-paper-collection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 

Repository files navigation

segmentation paper collection

2022

Title Venue Backbone PDF CODE
Vision Transformer Adapter for Dense Prediction arxiv ViT https://arxiv.org/pdf/2205.08534.pdf https://github.com/czczup/ViT-Adapter
Masked-attention Mask Transformer for Universal Image Segmentation CVPR Swin-transformer https://arxiv.org/pdf/2112.01527.pdf https://github.com/facebookresearch/Mask2Former
MPViT : Multi-Path Vision Transformer for Dense Prediction CVPR MPViT https://arxiv.org/pdf/2112.11010.pdf https://git.io/MPViT
Revisiting Multi-Scale Feature Fusion for Semantic Segmentation -- EfficientNet https://arxiv.org/pdf/2203.12683.pdf --
Rethinking Semantic Segmentation: A Prototype View CVPR --- https://arxiv.org/pdf/2203.13611.pdf https://github.com/tfzhou/ProtoSeg
Cross-Image Relational Knowledge Distillation for Semantic Segmentation CVPR --- https://arxiv.org/pdf/2204.06986.pdf https://github.com/winycg/CIRKD

2021

Title Venue Backbone PDF CODE
SegFormer: Simple and Efficient Design for SemanticSegmentation with Transformers NeurIPS -- https://arxiv.org/pdf/2105.15203.pdf https://github.com/NVlabs/SegFormer
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers CVPR -- https://arxiv.org/abs/2012.15840 https://fudan-zvg.github.io/SETR/
Per-Pixel Classification is Not All You Need for Semantic Segmentation NeurIPS Transformer head https://papers.nips.cc/paper/2021/file/950a4152c2b4aa3ad78bdd6b366cc179-Paper.pdf https://github.com/facebookresearch/MaskFormer
FaPN: Feature-aligned Pyramid Network for Dense Image Prediction ICCV ResNet https://arxiv.org/pdf/2108.07058v2.pdf https://github.com/EMI-Group/FaPN
Interlaced Sparse Self-Attention for Semantic Segmentation IJCV -- https://arxiv.org/pdf/1907.12273.pdf --
ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation ICCV -- https://arxiv.org/abs/2108.12382 https://github.com/SegmentationBLWX/sssegmentation
Learning Debiased and Disentangled Representations for Semantic Segmentation NEURIPS -- https://arxiv.org/pdf/2111.00531.pdf https://github.com/sanghyeokchu/DropClass

2020

Title Venue Backbone PDF CODE
SegFix: Model-Agnostic Boundary Refinement for Segmentation ECCV -- https://link.springer.com/chapter/10.1007%2F978-3-030-58610-2_29 https://github.com/openseg-group/openseg.pytorch
Context Prior for Scene Segmentation CVPR -- https://arxiv.org/pdf/2004.01547.pdf https://github.com/ycszen/ContextPrior
Disentangled Non-Local Neural Networks ECCV -- https://arxiv.org/pdf/2006.06668.pdf https://github.com/yinmh17/DNL-Semantic-Segmentation
Deep High-Resolution Representation Learning for Visual Recognition TPAMI resnet https://arxiv.org/pdf/1908.07919.pdf https://github.com/HRNet

2019

Title Venue Backbone PDF CODE
Dual Attention Network for Scene Segmentation CVPR resnet https://arxiv.org/pdf/1809.02983.pdf github.com/junfu1115/DANet/
Asymmetric Non-local Neural Networks for Semantic Segmentation ICCV resnet https://arxiv.org/pdf/1908.07678.pdf https://github.com/MendelXu/ANN
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond ECCV resnet https://arxiv.org/pdf/1904.11492.pdf https://github.com/xvjiarui/GCNet
Dynamic Multi-scale Filters for Semantic Segmentation ICCV resnet https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf https://github.com/Junjun2016/DMNet

2017

Title Venue Backbone PDF CODE
Rethinking Atrous Convolution for Semantic Image Segmentation Arxiv resnet https://arxiv.org/pdf/1706.05587.pdf https://github.com/tensorflow/models/tree/master/research/deeplab

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published