In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix overloading of MEM_UNINIT's meaning
Lonial reported an issue in the BPF verifier where check_mem_size_reg()
has the following code:
if (!tnum_is_const(reg->var_off))
/* For unprivileged variable accesses, disable raw
* mode so that the program is required to
* initialize all the memory that the helper could
* just partially fill up.
*/
meta = NULL;
This means that writes are not checked when the register containing the
size of the passed buffer has not a fixed size. Through this bug, a BPF
program can write to a map which is marked as read-only, for example,
.rodata global maps.
The problem is that MEM_UNINIT's initial meaning that "the passed buffer
to the BPF helper does not need to be initialized" which was added back
in commit 435faee1aae9 ("bpf, verifier: add ARG_PTR_TO_RAW_STACK type")
got overloaded over time with "the passed buffer is being written to".
The problem however is that checks such as the above which were added later
via 06c1c049721a ("bpf: allow helpers access to variable memory") set meta
to NULL in order force the user to always initialize the passed buffer to
the helper. Due to the current double meaning of MEM_UNINIT, this bypasses
verifier write checks to the memory (not boundary checks though) and only
assumes the latter memory is read instead.
Fix this by reverting MEM_UNINIT back to its original meaning, and having
MEM_WRITE as an annotation to BPF helpers in order to then trigger the
BPF verifier checks for writing to memory.
Some notes: check_arg_pair_ok() ensures that for ARG_CONST_SIZE{,_OR_ZERO}
we can access fn->arg_type[arg - 1] since it must contain a preceding
ARG_PTR_TO_MEM. For check_mem_reg() the meta argument can be removed
altogether since we do check both BPF_READ and BPF_WRITE. Same for the
equivalent check_kfunc_mem_size_reg().
References
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix overloading of MEM_UNINIT's meaning
Lonial reported an issue in the BPF verifier where check_mem_size_reg()
has the following code:
This means that writes are not checked when the register containing the
size of the passed buffer has not a fixed size. Through this bug, a BPF
program can write to a map which is marked as read-only, for example,
.rodata global maps.
The problem is that MEM_UNINIT's initial meaning that "the passed buffer
to the BPF helper does not need to be initialized" which was added back
in commit 435faee1aae9 ("bpf, verifier: add ARG_PTR_TO_RAW_STACK type")
got overloaded over time with "the passed buffer is being written to".
The problem however is that checks such as the above which were added later
via 06c1c049721a ("bpf: allow helpers access to variable memory") set meta
to NULL in order force the user to always initialize the passed buffer to
the helper. Due to the current double meaning of MEM_UNINIT, this bypasses
verifier write checks to the memory (not boundary checks though) and only
assumes the latter memory is read instead.
Fix this by reverting MEM_UNINIT back to its original meaning, and having
MEM_WRITE as an annotation to BPF helpers in order to then trigger the
BPF verifier checks for writing to memory.
Some notes: check_arg_pair_ok() ensures that for ARG_CONST_SIZE{,_OR_ZERO}
we can access fn->arg_type[arg - 1] since it must contain a preceding
ARG_PTR_TO_MEM. For check_mem_reg() the meta argument can be removed
altogether since we do check both BPF_READ and BPF_WRITE. Same for the
equivalent check_kfunc_mem_size_reg().
References