Skip to content

Proceedings of IEEE CVF. ICCV 2021 "Synthesis of Compositional Animations from Textual Descriptions."

License

Notifications You must be signed in to change notification settings

anindita127/Complextext2animation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Synthesis of Compositional Animations from Textual Descriptions (ICCV 2021)

[Paper], [Video]

Our code is tested on the following OS:

  • Ubuntu 18.04 LTS
  • Windows 10

Pre-requisites

Code

  • Python >= 3.6.10
  • Pytorch >= 1.5.1
  • conda >= 4.9.2 (optional but recommended)

All other pre-requisites are in the file environment.yml. Steps to install:

  1. Create the conda environment:
conda env create -f environment.yml
conda activate text2motion
  1. Install pytorch following the official instructions.

  2. Install all other requirements:

pip install -r requirements.txt

We denote the base directory of our project as $BASE.

Data

Download the KIT Motion-Language dataset and unzip the files in the $BASE/dataset/kit-mocap folder.

Running the code

  1. First, run: cd $BASE/src

  2. Preprocessing the data: python data.py This will create quat.csv, fke.csv and rifke.csv files for each input data.

  3. Calculate the mean and variance for Z-Normalization: python dataProcessing/meanVariance.py -mask '[0]' -feats_kind rifke -dataset KITMocap -path2data ../dataset/kit-mocap -f_new 8 The outputs will be saved in $BASE/src/dataProcessing/meanVar.

  4. [Optional] Train the model: python train_model_GD.py -batch_size 32 -curriculum 0 -dataset KITMocap -early_stopping 1 -exp 1 -f_new 8 -feats_kind rifke -lr 0.001 -mask "[0]" -model hierarchical_twostream -cpk t2m -num_epochs 300 -path2data ../dataset/kit-mocap -render_list subsets/render_list -s2v 1 -save_dir save/model -tb 1 -time 32 -transforms "['zNorm']"

We also provide a pre-trained model here. To use it, extract the contents of the downloaded zip file pretrained_model.zip inside the folder $BASE/src/save/model.

  1. Testing the trained model: python sample_wordConditioned.py -load save/model/$weights where $weights is the pre-trained network parameters, saved as a .p file. The outputs are generated inside a folder $BASE/src/save/model/$OUTPUT created automatically.

  2. Calculating the error metrics:

python eval_APE.py -load save/model/$weights
python eval_AVE.py -load save/model/$weights
python eval_CEE_SEE.py -load save/model/$weights
  1. Rendering the output files: python render.py -dataset KITMocap -path2data ../dataset/kit-mocap -feats_kind rifke -clean_render 0 -save_dir save/model/$OUTPUT

License

This code is distributed under an MIT LICENSE.

About

Proceedings of IEEE CVF. ICCV 2021 "Synthesis of Compositional Animations from Textual Descriptions."

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages