Our code is tested on the following OS:
- Ubuntu 18.04 LTS
- Windows 10
- Python >= 3.6.10
- Pytorch >= 1.5.1
- conda >= 4.9.2 (optional but recommended)
All other pre-requisites are in the file environment.yml
. Steps to install:
- Create the conda environment:
conda env create -f environment.yml
conda activate text2motion
-
Install pytorch following the official instructions.
-
Install all other requirements:
pip install -r requirements.txt
We denote the base directory of our project as $BASE
.
Download the KIT Motion-Language dataset and unzip the files in the $BASE/dataset/kit-mocap
folder.
-
First, run:
cd $BASE/src
-
Preprocessing the data:
python data.py
This will createquat.csv
,fke.csv
andrifke.csv
files for each input data. -
Calculate the mean and variance for Z-Normalization:
python dataProcessing/meanVariance.py -mask '[0]' -feats_kind rifke -dataset KITMocap -path2data ../dataset/kit-mocap -f_new 8
The outputs will be saved in$BASE/src/dataProcessing/meanVar
. -
[Optional] Train the model:
python train_model_GD.py -batch_size 32 -curriculum 0 -dataset KITMocap -early_stopping 1 -exp 1 -f_new 8 -feats_kind rifke -lr 0.001 -mask "[0]" -model hierarchical_twostream -cpk t2m -num_epochs 300 -path2data ../dataset/kit-mocap -render_list subsets/render_list -s2v 1 -save_dir save/model -tb 1 -time 32 -transforms "['zNorm']"
We also provide a pre-trained model here. To use it, extract the contents of the downloaded zip file pretrained_model.zip
inside the folder $BASE/src/save/model
.
-
Testing the trained model:
python sample_wordConditioned.py -load save/model/$weights
where$weights
is the pre-trained network parameters, saved as a.p
file. The outputs are generated inside a folder$BASE/src/save/model/$OUTPUT
created automatically. -
Calculating the error metrics:
python eval_APE.py -load save/model/$weights
python eval_AVE.py -load save/model/$weights
python eval_CEE_SEE.py -load save/model/$weights
- Rendering the output files:
python render.py -dataset KITMocap -path2data ../dataset/kit-mocap -feats_kind rifke -clean_render 0 -save_dir save/model/$OUTPUT
This code is distributed under an MIT LICENSE.