Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create CustomJob and Datasets operators for Vertex AI service #20077

Merged
merged 20 commits into from
Jan 28, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
313 changes: 313 additions & 0 deletions airflow/providers/google/cloud/example_dags/example_vertex_ai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""
Example Airflow DAG that demonstrates operators for the Google Vertex AI service in the Google
Cloud Platform.
This DAG relies on the following OS environment variables:
* GCP_VERTEX_AI_BUCKET - Google Cloud Storage bucket where the model will be saved
after training process was finished.
* CUSTOM_CONTAINER_URI - path to container with model.
* PYTHON_PACKAGE_GSC_URI - path to test model in archive.
* LOCAL_TRAINING_SCRIPT_PATH - path to local training script.
* DATASET_ID - ID of dataset which will be used in training process.
"""
import os
from datetime import datetime
from uuid import uuid4

from airflow import models
from airflow.providers.google.cloud.operators.vertex_ai.custom_job import (
CreateCustomContainerTrainingJobOperator,
CreateCustomPythonPackageTrainingJobOperator,
CreateCustomTrainingJobOperator,
DeleteCustomTrainingJobOperator,
ListCustomTrainingJobOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.dataset import (
CreateDatasetOperator,
DeleteDatasetOperator,
ExportDataOperator,
GetDatasetOperator,
ImportDataOperator,
ListDatasetsOperator,
UpdateDatasetOperator,
)

PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "an-id")
REGION = os.environ.get("GCP_LOCATION", "us-central1")
BUCKET = os.environ.get("GCP_VERTEX_AI_BUCKET", "vertex-ai-system-tests")

STAGING_BUCKET = f"gs://{BUCKET}"
DISPLAY_NAME = str(uuid4()) # Create random display name
CONTAINER_URI = "gcr.io/cloud-aiplatform/training/tf-cpu.2-2:latest"
CUSTOM_CONTAINER_URI = os.environ.get("CUSTOM_CONTAINER_URI", "path_to_container_with_model")
MODEL_SERVING_CONTAINER_URI = "gcr.io/cloud-aiplatform/prediction/tf2-cpu.2-2:latest"
REPLICA_COUNT = 1
MACHINE_TYPE = "n1-standard-4"
ACCELERATOR_TYPE = "ACCELERATOR_TYPE_UNSPECIFIED"
ACCELERATOR_COUNT = 0
TRAINING_FRACTION_SPLIT = 0.7
TEST_FRACTION_SPLIT = 0.15
VALIDATION_FRACTION_SPLIT = 0.15

PYTHON_PACKAGE_GCS_URI = os.environ.get("PYTHON_PACKAGE_GSC_URI", "path_to_test_model_in_arch")
PYTHON_MODULE_NAME = "aiplatform_custom_trainer_script.task"

LOCAL_TRAINING_SCRIPT_PATH = os.environ.get("LOCAL_TRAINING_SCRIPT_PATH", "path_to_training_script")

TRAINING_PIPELINE_ID = "test-training-pipeline-id"
CUSTOM_JOB_ID = "test-custom-job-id"

IMAGE_DATASET = {
"display_name": str(uuid4()),
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml",
"metadata": "test-image-dataset",
}
TABULAR_DATASET = {
"display_name": str(uuid4()),
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml",
"metadata": "test-tabular-dataset",
}
TEXT_DATASET = {
"display_name": str(uuid4()),
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml",
"metadata": "test-text-dataset",
}
VIDEO_DATASET = {
"display_name": str(uuid4()),
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml",
"metadata": "test-video-dataset",
}
TIME_SERIES_DATASET = {
"display_name": str(uuid4()),
"metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/time_series_1.0.0.yaml",
"metadata": "test-video-dataset",
}
DATASET_ID = os.environ.get("DATASET_ID", "test-dataset-id")
TEST_EXPORT_CONFIG = {"gcs_destination": {"output_uri_prefix": "gs://test-vertex-ai-bucket/exports"}}
TEST_IMPORT_CONFIG = [
{
"data_item_labels": {
"test-labels-name": "test-labels-value",
},
"import_schema_uri": (
"gs://google-cloud-aiplatform/schema/dataset/ioformat/image_bounding_box_io_format_1.0.0.yaml"
),
"gcs_source": {
"uris": ["gs://ucaip-test-us-central1/dataset/salads_oid_ml_use_public_unassigned.jsonl"]
},
},
]
DATASET_TO_UPDATE = {"display_name": "test-name"}
TEST_UPDATE_MASK = {"paths": ["displayName"]}

with models.DAG(
"example_gcp_vertex_ai_custom_jobs",
potiuk marked this conversation as resolved.
Show resolved Hide resolved
schedule_interval="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
) as custom_jobs_dag:
# [START how_to_cloud_vertex_ai_create_custom_container_training_job_operator]
create_custom_container_training_job = CreateCustomContainerTrainingJobOperator(
task_id="custom_container_task",
staging_bucket=STAGING_BUCKET,
display_name=f"train-housing-container-{DISPLAY_NAME}",
container_uri=CUSTOM_CONTAINER_URI,
model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI,
# run params
dataset_id=DATASET_ID,
command=["python3", "task.py"],
model_display_name=f"container-housing-model-{DISPLAY_NAME}",
replica_count=REPLICA_COUNT,
machine_type=MACHINE_TYPE,
accelerator_type=ACCELERATOR_TYPE,
accelerator_count=ACCELERATOR_COUNT,
training_fraction_split=TRAINING_FRACTION_SPLIT,
validation_fraction_split=VALIDATION_FRACTION_SPLIT,
test_fraction_split=TEST_FRACTION_SPLIT,
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_create_custom_container_training_job_operator]

# [START how_to_cloud_vertex_ai_create_custom_python_package_training_job_operator]
create_custom_python_package_training_job = CreateCustomPythonPackageTrainingJobOperator(
task_id="python_package_task",
staging_bucket=STAGING_BUCKET,
display_name=f"train-housing-py-package-{DISPLAY_NAME}",
python_package_gcs_uri=PYTHON_PACKAGE_GCS_URI,
python_module_name=PYTHON_MODULE_NAME,
container_uri=CONTAINER_URI,
model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI,
# run params
dataset_id=DATASET_ID,
model_display_name=f"py-package-housing-model-{DISPLAY_NAME}",
replica_count=REPLICA_COUNT,
machine_type=MACHINE_TYPE,
accelerator_type=ACCELERATOR_TYPE,
accelerator_count=ACCELERATOR_COUNT,
training_fraction_split=TRAINING_FRACTION_SPLIT,
validation_fraction_split=VALIDATION_FRACTION_SPLIT,
test_fraction_split=TEST_FRACTION_SPLIT,
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_create_custom_python_package_training_job_operator]

# [START how_to_cloud_vertex_ai_create_custom_training_job_operator]
create_custom_training_job = CreateCustomTrainingJobOperator(
task_id="custom_task",
staging_bucket=STAGING_BUCKET,
display_name=f"train-housing-custom-{DISPLAY_NAME}",
script_path=LOCAL_TRAINING_SCRIPT_PATH,
container_uri=CONTAINER_URI,
requirements=["gcsfs==0.7.1"],
model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI,
# run params
dataset_id=DATASET_ID,
replica_count=1,
model_display_name=f"custom-housing-model-{DISPLAY_NAME}",
sync=False,
potiuk marked this conversation as resolved.
Show resolved Hide resolved
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_create_custom_training_job_operator]

# [START how_to_cloud_vertex_ai_delete_custom_training_job_operator]
delete_custom_training_job = DeleteCustomTrainingJobOperator(
task_id="delete_custom_training_job",
training_pipeline_id=TRAINING_PIPELINE_ID,
custom_job_id=CUSTOM_JOB_ID,
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_delete_custom_training_job_operator]

# [START how_to_cloud_vertex_ai_list_custom_training_job_operator]
list_custom_training_job = ListCustomTrainingJobOperator(
task_id="list_custom_training_job",
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_list_custom_training_job_operator]

with models.DAG(
"example_gcp_vertex_ai_dataset",
schedule_interval="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
) as dataset_dag:
# [START how_to_cloud_vertex_ai_create_dataset_operator]
create_image_dataset_job = CreateDatasetOperator(
task_id="image_dataset",
dataset=IMAGE_DATASET,
region=REGION,
project_id=PROJECT_ID,
)
create_tabular_dataset_job = CreateDatasetOperator(
task_id="tabular_dataset",
dataset=TABULAR_DATASET,
region=REGION,
project_id=PROJECT_ID,
)
create_text_dataset_job = CreateDatasetOperator(
task_id="text_dataset",
dataset=TEXT_DATASET,
region=REGION,
project_id=PROJECT_ID,
)
create_video_dataset_job = CreateDatasetOperator(
task_id="video_dataset",
dataset=VIDEO_DATASET,
region=REGION,
project_id=PROJECT_ID,
)
create_time_series_dataset_job = CreateDatasetOperator(
task_id="time_series_dataset",
dataset=TIME_SERIES_DATASET,
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_create_dataset_operator]

# [START how_to_cloud_vertex_ai_delete_dataset_operator]
delete_dataset_job = DeleteDatasetOperator(
task_id="delete_dataset",
dataset_id=create_text_dataset_job.output['dataset_id'],
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_delete_dataset_operator]

# [START how_to_cloud_vertex_ai_get_dataset_operator]
get_dataset = GetDatasetOperator(
task_id="get_dataset",
project_id=PROJECT_ID,
region=REGION,
dataset_id=create_tabular_dataset_job.output['dataset_id'],
)
# [END how_to_cloud_vertex_ai_get_dataset_operator]

# [START how_to_cloud_vertex_ai_export_data_operator]
export_data_job = ExportDataOperator(
task_id="export_data",
dataset_id=create_image_dataset_job.output['dataset_id'],
region=REGION,
project_id=PROJECT_ID,
export_config=TEST_EXPORT_CONFIG,
)
# [END how_to_cloud_vertex_ai_export_data_operator]

# [START how_to_cloud_vertex_ai_import_data_operator]
import_data_job = ImportDataOperator(
task_id="import_data",
dataset_id=create_image_dataset_job.output['dataset_id'],
region=REGION,
project_id=PROJECT_ID,
import_configs=TEST_IMPORT_CONFIG,
)
# [END how_to_cloud_vertex_ai_import_data_operator]

# [START how_to_cloud_vertex_ai_list_dataset_operator]
list_dataset_job = ListDatasetsOperator(
task_id="list_dataset",
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_list_dataset_operator]

# [START how_to_cloud_vertex_ai_update_dataset_operator]
update_dataset_job = UpdateDatasetOperator(
task_id="update_dataset",
project_id=PROJECT_ID,
region=REGION,
dataset_id=create_video_dataset_job.output['dataset_id'],
dataset=DATASET_TO_UPDATE,
update_mask=TEST_UPDATE_MASK,
)
# [END how_to_cloud_vertex_ai_update_dataset_operator]

create_time_series_dataset_job
create_text_dataset_job >> delete_dataset_job
create_tabular_dataset_job >> get_dataset
create_image_dataset_job >> import_data_job >> export_data_job
create_video_dataset_job >> update_dataset_job
list_dataset_job
16 changes: 16 additions & 0 deletions airflow/providers/google/cloud/hooks/vertex_ai/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
Loading