-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Move
Covariance
(Sample) covar
/ covar_samp
to be a User Define…
…d Aggregate Function (#10372) * introduce CovarianceSample Signed-off-by: jayzhan211 <[email protected]> * rewrite macro Signed-off-by: jayzhan211 <[email protected]> * rm old statstype Signed-off-by: jayzhan211 <[email protected]> * register Signed-off-by: jayzhan211 <[email protected]> * state field Signed-off-by: jayzhan211 <[email protected]> * rm builtin Signed-off-by: jayzhan211 <[email protected]> * addres comments Signed-off-by: jayzhan211 <[email protected]> --------- Signed-off-by: jayzhan211 <[email protected]>
- Loading branch information
1 parent
c1f1370
commit a0fccbf
Showing
21 changed files
with
418 additions
and
391 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,318 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! [`CovarianceSample`]: covariance sample aggregations. | ||
use std::fmt::Debug; | ||
|
||
use arrow::{ | ||
array::{ArrayRef, Float64Array, UInt64Array}, | ||
compute::kernels::cast, | ||
datatypes::{DataType, Field}, | ||
}; | ||
|
||
use datafusion_common::{ | ||
downcast_value, plan_err, unwrap_or_internal_err, DataFusionError, Result, | ||
ScalarValue, | ||
}; | ||
use datafusion_expr::{ | ||
function::AccumulatorArgs, type_coercion::aggregates::NUMERICS, | ||
utils::format_state_name, Accumulator, AggregateUDFImpl, Signature, Volatility, | ||
}; | ||
use datafusion_physical_expr_common::aggregate::stats::StatsType; | ||
|
||
make_udaf_expr_and_func!( | ||
CovarianceSample, | ||
covar_samp, | ||
y x, | ||
"Computes the sample covariance.", | ||
covar_samp_udaf | ||
); | ||
|
||
pub struct CovarianceSample { | ||
signature: Signature, | ||
aliases: Vec<String>, | ||
} | ||
|
||
impl Debug for CovarianceSample { | ||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { | ||
f.debug_struct("CovarianceSample") | ||
.field("name", &self.name()) | ||
.field("signature", &self.signature) | ||
.finish() | ||
} | ||
} | ||
|
||
impl Default for CovarianceSample { | ||
fn default() -> Self { | ||
Self::new() | ||
} | ||
} | ||
|
||
impl CovarianceSample { | ||
pub fn new() -> Self { | ||
Self { | ||
aliases: vec![String::from("covar")], | ||
signature: Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable), | ||
} | ||
} | ||
} | ||
|
||
impl AggregateUDFImpl for CovarianceSample { | ||
fn as_any(&self) -> &dyn std::any::Any { | ||
self | ||
} | ||
|
||
fn name(&self) -> &str { | ||
"covar_samp" | ||
} | ||
|
||
fn signature(&self) -> &Signature { | ||
&self.signature | ||
} | ||
|
||
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> { | ||
if !arg_types[0].is_numeric() { | ||
return plan_err!("Covariance requires numeric input types"); | ||
} | ||
|
||
Ok(DataType::Float64) | ||
} | ||
|
||
fn state_fields( | ||
&self, | ||
name: &str, | ||
_value_type: DataType, | ||
_ordering_fields: Vec<Field>, | ||
) -> Result<Vec<Field>> { | ||
Ok(vec![ | ||
Field::new(format_state_name(name, "count"), DataType::UInt64, true), | ||
Field::new(format_state_name(name, "mean1"), DataType::Float64, true), | ||
Field::new(format_state_name(name, "mean2"), DataType::Float64, true), | ||
Field::new( | ||
format_state_name(name, "algo_const"), | ||
DataType::Float64, | ||
true, | ||
), | ||
]) | ||
} | ||
|
||
fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(CovarianceAccumulator::try_new(StatsType::Sample)?)) | ||
} | ||
|
||
fn aliases(&self) -> &[String] { | ||
&self.aliases | ||
} | ||
} | ||
|
||
/// An accumulator to compute covariance | ||
/// The algorithm used is an online implementation and numerically stable. It is derived from the following paper | ||
/// for calculating variance: | ||
/// Welford, B. P. (1962). "Note on a method for calculating corrected sums of squares and products". | ||
/// Technometrics. 4 (3): 419–420. doi:10.2307/1266577. JSTOR 1266577. | ||
/// | ||
/// The algorithm has been analyzed here: | ||
/// Ling, Robert F. (1974). "Comparison of Several Algorithms for Computing Sample Means and Variances". | ||
/// Journal of the American Statistical Association. 69 (348): 859–866. doi:10.2307/2286154. JSTOR 2286154. | ||
/// | ||
/// Though it is not covered in the original paper but is based on the same idea, as a result the algorithm is online, | ||
/// parallelizable and numerically stable. | ||
#[derive(Debug)] | ||
pub struct CovarianceAccumulator { | ||
algo_const: f64, | ||
mean1: f64, | ||
mean2: f64, | ||
count: u64, | ||
stats_type: StatsType, | ||
} | ||
|
||
impl CovarianceAccumulator { | ||
/// Creates a new `CovarianceAccumulator` | ||
pub fn try_new(s_type: StatsType) -> Result<Self> { | ||
Ok(Self { | ||
algo_const: 0_f64, | ||
mean1: 0_f64, | ||
mean2: 0_f64, | ||
count: 0_u64, | ||
stats_type: s_type, | ||
}) | ||
} | ||
|
||
pub fn get_count(&self) -> u64 { | ||
self.count | ||
} | ||
|
||
pub fn get_mean1(&self) -> f64 { | ||
self.mean1 | ||
} | ||
|
||
pub fn get_mean2(&self) -> f64 { | ||
self.mean2 | ||
} | ||
|
||
pub fn get_algo_const(&self) -> f64 { | ||
self.algo_const | ||
} | ||
} | ||
|
||
impl Accumulator for CovarianceAccumulator { | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::from(self.count), | ||
ScalarValue::from(self.mean1), | ||
ScalarValue::from(self.mean2), | ||
ScalarValue::from(self.algo_const), | ||
]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values1 = &cast(&values[0], &DataType::Float64)?; | ||
let values2 = &cast(&values[1], &DataType::Float64)?; | ||
|
||
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten(); | ||
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten(); | ||
|
||
for i in 0..values1.len() { | ||
let value1 = if values1.is_valid(i) { | ||
arr1.next() | ||
} else { | ||
None | ||
}; | ||
let value2 = if values2.is_valid(i) { | ||
arr2.next() | ||
} else { | ||
None | ||
}; | ||
|
||
if value1.is_none() || value2.is_none() { | ||
continue; | ||
} | ||
|
||
let value1 = unwrap_or_internal_err!(value1); | ||
let value2 = unwrap_or_internal_err!(value2); | ||
let new_count = self.count + 1; | ||
let delta1 = value1 - self.mean1; | ||
let new_mean1 = delta1 / new_count as f64 + self.mean1; | ||
let delta2 = value2 - self.mean2; | ||
let new_mean2 = delta2 / new_count as f64 + self.mean2; | ||
let new_c = delta1 * (value2 - new_mean2) + self.algo_const; | ||
|
||
self.count += 1; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values1 = &cast(&values[0], &DataType::Float64)?; | ||
let values2 = &cast(&values[1], &DataType::Float64)?; | ||
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten(); | ||
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten(); | ||
|
||
for i in 0..values1.len() { | ||
let value1 = if values1.is_valid(i) { | ||
arr1.next() | ||
} else { | ||
None | ||
}; | ||
let value2 = if values2.is_valid(i) { | ||
arr2.next() | ||
} else { | ||
None | ||
}; | ||
|
||
if value1.is_none() || value2.is_none() { | ||
continue; | ||
} | ||
|
||
let value1 = unwrap_or_internal_err!(value1); | ||
let value2 = unwrap_or_internal_err!(value2); | ||
|
||
let new_count = self.count - 1; | ||
let delta1 = self.mean1 - value1; | ||
let new_mean1 = delta1 / new_count as f64 + self.mean1; | ||
let delta2 = self.mean2 - value2; | ||
let new_mean2 = delta2 / new_count as f64 + self.mean2; | ||
let new_c = self.algo_const - delta1 * (new_mean2 - value2); | ||
|
||
self.count -= 1; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
let counts = downcast_value!(states[0], UInt64Array); | ||
let means1 = downcast_value!(states[1], Float64Array); | ||
let means2 = downcast_value!(states[2], Float64Array); | ||
let cs = downcast_value!(states[3], Float64Array); | ||
|
||
for i in 0..counts.len() { | ||
let c = counts.value(i); | ||
if c == 0_u64 { | ||
continue; | ||
} | ||
let new_count = self.count + c; | ||
let new_mean1 = self.mean1 * self.count as f64 / new_count as f64 | ||
+ means1.value(i) * c as f64 / new_count as f64; | ||
let new_mean2 = self.mean2 * self.count as f64 / new_count as f64 | ||
+ means2.value(i) * c as f64 / new_count as f64; | ||
let delta1 = self.mean1 - means1.value(i); | ||
let delta2 = self.mean2 - means2.value(i); | ||
let new_c = self.algo_const | ||
+ cs.value(i) | ||
+ delta1 * delta2 * self.count as f64 * c as f64 / new_count as f64; | ||
|
||
self.count = new_count; | ||
self.mean1 = new_mean1; | ||
self.mean2 = new_mean2; | ||
self.algo_const = new_c; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
let count = match self.stats_type { | ||
StatsType::Population => self.count, | ||
StatsType::Sample => { | ||
if self.count > 0 { | ||
self.count - 1 | ||
} else { | ||
self.count | ||
} | ||
} | ||
}; | ||
|
||
if count == 0 { | ||
Ok(ScalarValue::Float64(None)) | ||
} else { | ||
Ok(ScalarValue::Float64(Some(self.algo_const / count as f64))) | ||
} | ||
} | ||
|
||
fn size(&self) -> usize { | ||
std::mem::size_of_val(self) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.