This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Added np.diag as mxnet operator, WIP Done: 2d input forward pass Missing: 1d input forward all backward * Added a simple gradient transfer backwards operator for diag Fixed small typos as well * Finished backward operation * Added full support for k * Finished added the 1D case to the diag operator Finished function documentation Added unit tests * Fixed cpplinter errors in the diag operator Issues were extra white spaces and include order * Fixed indentation in diag_op-inl.h * Changed diag operator tests to use np.diag() as comparison * Fixed kernel bug in gpu diag operator * Replaced the min operator with an inline if statement. * Added diag to ndarray and symbol * Replaced the type of parameter k from int32 to nnvm::dim * Added default argument to k in ndarray and symbol * Fixed ndarray and symbol diag calls * Fixed the optional k parameter * Fixed cpp linting error * Changed test data datatype to float32 * K values resulting into 0-sized diagonals will now throw an exception. Added matching test case * Fixed unittest * Added diag to NDArray and Symbol api doc * Added missing api doc
- Loading branch information
1 parent
b1f2f44
commit f15b1b8
Showing
8 changed files
with
443 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,217 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file diag_op-inl.h | ||
* \brief CPU Implementation of the diag op | ||
* \author Istvan Fehervari | ||
*/ | ||
|
||
#ifndef MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_ | ||
#define MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_ | ||
|
||
#include <dmlc/parameter.h> | ||
#include <vector> | ||
#include <algorithm> | ||
#include "../mxnet_op.h" | ||
#include "../operator_common.h" | ||
#include "../elemwise_op_common.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
struct DiagParam : public dmlc::Parameter<DiagParam> { | ||
dmlc::optional<int> k; | ||
DMLC_DECLARE_PARAMETER(DiagParam) { | ||
DMLC_DECLARE_FIELD(k) | ||
.set_default(dmlc::optional<int>(0)) | ||
.describe("Diagonal in question. The default is 0. " | ||
"Use k>0 for diagonals above the main diagonal, " | ||
"and k<0 for diagonals below the main diagonal. " | ||
"If input has shape (S0 S1) k must be between -S0 and S1"); | ||
} | ||
}; | ||
|
||
inline TShape DiagShapeImpl(const TShape& ishape, const nnvm::dim_t k) { | ||
if (ishape.ndim() == 1) { | ||
auto s = ishape[0] + std::abs(k); | ||
return TShape({s, s}); | ||
} | ||
|
||
auto h = ishape[0]; | ||
auto w = ishape[1]; | ||
|
||
if (k > 0) { | ||
w -= k; | ||
} else if (k < 0) { | ||
h += k; | ||
} | ||
|
||
auto s = std::min(h, w); | ||
if (s < 0) { | ||
s = 0; | ||
} | ||
|
||
return TShape({s}); | ||
} | ||
|
||
inline bool DiagOpShape(const nnvm::NodeAttrs& attrs, | ||
std::vector<TShape>* in_attrs, | ||
std::vector<TShape>* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
|
||
const TShape& ishape = (*in_attrs)[0]; | ||
if (ishape.ndim() == 0) return false; | ||
if (ishape.ndim() > 2) LOG(FATAL) << "Input must be 1- or 2-d."; | ||
|
||
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed); | ||
|
||
TShape oshape = DiagShapeImpl(ishape, param.k.value()); | ||
if (shape_is_none(oshape)) { | ||
LOG(FATAL) << "Diagonal does not exist."; | ||
} | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); | ||
|
||
return out_attrs->at(0).ndim() != 0U; | ||
} | ||
|
||
inline bool DiagOpType(const nnvm::NodeAttrs& attrs, | ||
std::vector<int> *in_attrs, | ||
std::vector<int> *out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
|
||
TYPE_ASSIGN_CHECK(*out_attrs, 0, (*in_attrs)[0]); | ||
TYPE_ASSIGN_CHECK(*in_attrs, 0, (*out_attrs)[0]); | ||
return (*out_attrs)[0] != -1; | ||
} | ||
|
||
template<int req> | ||
struct diag { | ||
template<typename DType> | ||
MSHADOW_XINLINE static void Map(int i, DType* out, const DType* a, | ||
mshadow::Shape<2> ishape, int k) { | ||
using namespace mxnet_op; | ||
int j = 0; | ||
if (k > 0) { | ||
j = ravel(mshadow::Shape2(i, i + k), ishape); | ||
} else if (k < 0) { | ||
j = ravel(mshadow::Shape2(i - k, i), ishape); | ||
} else { | ||
j = ravel(mshadow::Shape2(i, i), ishape); | ||
} | ||
|
||
KERNEL_ASSIGN(out[i], req, a[j]); | ||
} | ||
}; | ||
|
||
template<int req> | ||
struct diag_gen { | ||
template<typename DType> | ||
MSHADOW_XINLINE static void Map(int i, DType* out, const DType* a, | ||
mshadow::Shape<2> oshape, int k) { | ||
using namespace mxnet_op; | ||
|
||
auto j = unravel(i, oshape); | ||
if (j[1] == (j[0] + k)) { | ||
auto l = j[0] < j[1] ? j[0] : j[1]; | ||
KERNEL_ASSIGN(out[i], req, a[l]); | ||
} else { | ||
KERNEL_ASSIGN(out[i], req, static_cast<DType>(0)); | ||
} | ||
} | ||
}; | ||
|
||
template<typename xpu> | ||
void DiagOpForward(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using namespace mxnet_op; | ||
using namespace mshadow; | ||
CHECK_EQ(inputs.size(), 1U); | ||
CHECK_EQ(outputs.size(), 1U); | ||
CHECK_EQ(req.size(), 1U); | ||
CHECK_EQ(req[0], kWriteTo); | ||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
const TBlob& in_data = inputs[0]; | ||
const TBlob& out_data = outputs[0]; | ||
const TShape& ishape = inputs[0].shape_; | ||
const TShape& oshape = outputs[0].shape_; | ||
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed); | ||
|
||
if (ishape.ndim() == 2) { | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<diag<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), | ||
in_data.dptr<DType>(), Shape2(ishape[0], ishape[1]), param.k.value()); | ||
}); | ||
}); | ||
} else { | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<diag_gen<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), | ||
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]), param.k.value()); | ||
}); | ||
}); | ||
} | ||
} | ||
|
||
template<typename xpu> | ||
void DiagOpBackward(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using namespace mxnet_op; | ||
using namespace mshadow; | ||
CHECK_EQ(inputs.size(), 1U); | ||
CHECK_EQ(outputs.size(), 1U); | ||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
|
||
const TBlob& in_data = inputs[0]; | ||
const TBlob& out_data = outputs[0]; | ||
const TShape& ishape = inputs[0].shape_; | ||
const TShape& oshape = outputs[0].shape_; | ||
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed); | ||
|
||
if (oshape.ndim() == 2) { | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<diag_gen<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), | ||
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]), param.k.value()); | ||
}); | ||
}); | ||
} else { | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<diag<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), | ||
in_data.dptr<DType>(), Shape2(ishape[0], ishape[1]), param.k.value()); | ||
}); | ||
}); | ||
} | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file diag_op.cc | ||
* \brief | ||
* \author Istvan Fehervari | ||
*/ | ||
|
||
#include "./diag_op-inl.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
DMLC_REGISTER_PARAMETER(DiagParam); | ||
|
||
NNVM_REGISTER_OP(diag) | ||
.describe(R"code(Extracts a diagonal or constructs a diagonal array. | ||
``diag``'s behavior depends on the input array dimensions: | ||
- 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero | ||
- 2-D arrays: returns elements in the diagonal as a new 1-D array | ||
- N-D arrays: not supported yet | ||
Examples:: | ||
x = [[1, 2, 3], | ||
[4, 5, 6]] | ||
diag(x) = [1, 5] | ||
diag(x, k=1) = [2, 6] | ||
diag(x, k=-1) = [4] | ||
x = [1, 2, 3] | ||
diag(x) = [[1, 0, 0], | ||
[0, 2, 0], | ||
[0, 0, 3]] | ||
diag(x, k=1) = [[0, 1, 0], | ||
[0, 0, 2], | ||
[0, 0, 0]] | ||
diag(x, k=-1) = [[0, 0, 0], | ||
[1, 0, 0], | ||
[0, 2, 0]] | ||
)code" ADD_FILELINE) | ||
.set_attr_parser(ParamParser<DiagParam>) | ||
.set_num_inputs(1) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::FListInputNames>("FListInputNames", | ||
[](const NodeAttrs& attrs) { | ||
return std::vector<std::string>{"data"}; | ||
}) | ||
.set_attr<nnvm::FInferShape>("FInferShape", DiagOpShape) | ||
.set_attr<nnvm::FInferType>("FInferType", DiagOpType) | ||
.set_attr<FCompute>("FCompute<cpu>", DiagOpForward<cpu>) | ||
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_diag"}) | ||
.add_argument("data", "NDArray-or-Symbol", "Input ndarray") | ||
.add_arguments(DiagParam::__FIELDS__()); | ||
|
||
|
||
NNVM_REGISTER_OP(_backward_diag) | ||
.set_attr_parser(ParamParser<DiagParam>) | ||
.set_num_inputs(1) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::TIsBackward>("TIsBackward", true) | ||
.set_attr<FCompute>("FCompute<cpu>", DiagOpBackward<cpu>); | ||
|
||
|
||
} // namespace op | ||
} // namespace mxnet |
Oops, something went wrong.