Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Added the diag() operator #11643

Merged
merged 21 commits into from
Jul 19, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/api/python/ndarray/ndarray.md
Original file line number Diff line number Diff line change
Expand Up @@ -131,6 +131,7 @@ The `ndarray` package provides several classes:
NDArray.flatten
NDArray.expand_dims
NDArray.split
NDArray.diag
```
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry I didn't make it clear - there're two places to add per file. For ndarray.md, One is NDArray.diag (fluent method) and the other is (ndarray.)diag at line 360.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done


### Array expand elements
Expand Down Expand Up @@ -364,6 +365,7 @@ The `ndarray` package provides several classes:
ones_like
full
arange
diag
load
save
```
Expand Down
2 changes: 2 additions & 0 deletions docs/api/python/symbol/symbol.md
Original file line number Diff line number Diff line change
Expand Up @@ -182,6 +182,7 @@ Composite multiple symbols into a new one by an operator.

Symbol.zeros_like
Symbol.ones_like
Symbol.diag
```

### Changing shape and type
Expand Down Expand Up @@ -381,6 +382,7 @@ Composite multiple symbols into a new one by an operator.
reshape_like
flatten
expand_dims
diag
```

### Expanding elements
Expand Down
8 changes: 8 additions & 0 deletions python/mxnet/ndarray/ndarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -1302,6 +1302,14 @@ def flip(self, *args, **kwargs):
"""
return op.flip(self, *args, **kwargs)

def diag(self, k=0, **kwargs):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please also update https://github.com/apache/incubator-mxnet/blob/master/docs/api/python/ndarray/ndarray.md and symbol/symbol.md (probably add it to the section of array creation routines like https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html)
@reminisce maybe we should also mention adding documentation in the operator tutorial ?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Agree.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good point, added it.

"""Convenience fluent method for :py:func:`diag`.

The arguments are the same as for :py:func:`diag`, with
this array as data.
"""
return op.diag(self, k, **kwargs)

def sum(self, *args, **kwargs):
"""Convenience fluent method for :py:func:`sum`.

Expand Down
8 changes: 8 additions & 0 deletions python/mxnet/symbol/symbol.py
Original file line number Diff line number Diff line change
Expand Up @@ -2038,6 +2038,14 @@ def flip(self, *args, **kwargs):
"""
return op.flip(self, *args, **kwargs)

def diag(self, k=0, **kwargs):
"""Convenience fluent method for :py:func:`diag`.

The arguments are the same as for :py:func:`diag`, with
this array as data.
"""
return op.diag(self, k, **kwargs)

def sum(self, *args, **kwargs):
"""Convenience fluent method for :py:func:`sum`.

Expand Down
217 changes: 217 additions & 0 deletions src/operator/tensor/diag_op-inl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2015 by Contributors
* \file diag_op-inl.h
* \brief CPU Implementation of the diag op
* \author Istvan Fehervari
*/

#ifndef MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_
#define MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_

#include <dmlc/parameter.h>
#include <vector>
#include <algorithm>
#include "../mxnet_op.h"
#include "../operator_common.h"
#include "../elemwise_op_common.h"

namespace mxnet {
namespace op {

struct DiagParam : public dmlc::Parameter<DiagParam> {
dmlc::optional<int> k;
DMLC_DECLARE_PARAMETER(DiagParam) {
DMLC_DECLARE_FIELD(k)
.set_default(dmlc::optional<int>(0))
.describe("Diagonal in question. The default is 0. "
"Use k>0 for diagonals above the main diagonal, "
"and k<0 for diagonals below the main diagonal. "
"If input has shape (S0 S1) k must be between -S0 and S1");
}
};

inline TShape DiagShapeImpl(const TShape& ishape, const nnvm::dim_t k) {
if (ishape.ndim() == 1) {
auto s = ishape[0] + std::abs(k);
return TShape({s, s});
}

auto h = ishape[0];
auto w = ishape[1];

if (k > 0) {
w -= k;
} else if (k < 0) {
h += k;
}

auto s = std::min(h, w);
if (s < 0) {
s = 0;
}

return TShape({s});
}

inline bool DiagOpShape(const nnvm::NodeAttrs& attrs,
std::vector<TShape>* in_attrs,
std::vector<TShape>* out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);

const TShape& ishape = (*in_attrs)[0];
if (ishape.ndim() == 0) return false;
if (ishape.ndim() > 2) LOG(FATAL) << "Input must be 1- or 2-d.";

const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed);

TShape oshape = DiagShapeImpl(ishape, param.k.value());
if (shape_is_none(oshape)) {
LOG(FATAL) << "Diagonal does not exist.";
}
SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape);

return out_attrs->at(0).ndim() != 0U;
}

inline bool DiagOpType(const nnvm::NodeAttrs& attrs,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);

TYPE_ASSIGN_CHECK(*out_attrs, 0, (*in_attrs)[0]);
TYPE_ASSIGN_CHECK(*in_attrs, 0, (*out_attrs)[0]);
return (*out_attrs)[0] != -1;
}

template<int req>
struct diag {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, DType* out, const DType* a,
mshadow::Shape<2> ishape, int k) {
using namespace mxnet_op;
int j = 0;
if (k > 0) {
j = ravel(mshadow::Shape2(i, i + k), ishape);
} else if (k < 0) {
j = ravel(mshadow::Shape2(i - k, i), ishape);
} else {
j = ravel(mshadow::Shape2(i, i), ishape);
}

KERNEL_ASSIGN(out[i], req, a[j]);
}
};

template<int req>
struct diag_gen {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, DType* out, const DType* a,
mshadow::Shape<2> oshape, int k) {
using namespace mxnet_op;

auto j = unravel(i, oshape);
if (j[1] == (j[0] + k)) {
auto l = j[0] < j[1] ? j[0] : j[1];
KERNEL_ASSIGN(out[i], req, a[l]);
} else {
KERNEL_ASSIGN(out[i], req, static_cast<DType>(0));
}
}
};

template<typename xpu>
void DiagOpForward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
using namespace mshadow;
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
CHECK_EQ(req.size(), 1U);
CHECK_EQ(req[0], kWriteTo);
Stream<xpu> *s = ctx.get_stream<xpu>();
const TBlob& in_data = inputs[0];
const TBlob& out_data = outputs[0];
const TShape& ishape = inputs[0].shape_;
const TShape& oshape = outputs[0].shape_;
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed);

if (ishape.ndim() == 2) {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(ishape[0], ishape[1]), param.k.value());
});
});
} else {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag_gen<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]), param.k.value());
});
});
}
}

template<typename xpu>
void DiagOpBackward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
using namespace mshadow;
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
Stream<xpu> *s = ctx.get_stream<xpu>();

const TBlob& in_data = inputs[0];
const TBlob& out_data = outputs[0];
const TShape& ishape = inputs[0].shape_;
const TShape& oshape = outputs[0].shape_;
const DiagParam& param = nnvm::get<DiagParam>(attrs.parsed);

if (oshape.ndim() == 2) {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag_gen<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(oshape[0], oshape[1]), param.k.value());
});
});
} else {
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<diag<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(),
in_data.dptr<DType>(), Shape2(ishape[0], ishape[1]), param.k.value());
});
});
}
}

} // namespace op
} // namespace mxnet

#endif // MXNET_OPERATOR_TENSOR_DIAG_OP_INL_H_
93 changes: 93 additions & 0 deletions src/operator/tensor/diag_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2015 by Contributors
* \file diag_op.cc
* \brief
* \author Istvan Fehervari
*/

#include "./diag_op-inl.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(DiagParam);

NNVM_REGISTER_OP(diag)
.describe(R"code(Extracts a diagonal or constructs a diagonal array.

``diag``'s behavior depends on the input array dimensions:

- 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero
- 2-D arrays: returns elements in the diagonal as a new 1-D array
- N-D arrays: not supported yet

Examples::

x = [[1, 2, 3],
[4, 5, 6]]

diag(x) = [1, 5]

diag(x, k=1) = [2, 6]

diag(x, k=-1) = [4]

x = [1, 2, 3]

diag(x) = [[1, 0, 0],
[0, 2, 0],
[0, 0, 3]]

diag(x, k=1) = [[0, 1, 0],
[0, 0, 2],
[0, 0, 0]]

diag(x, k=-1) = [[0, 0, 0],
[1, 0, 0],
[0, 2, 0]]

)code" ADD_FILELINE)
.set_attr_parser(ParamParser<DiagParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<nnvm::FInferShape>("FInferShape", DiagOpShape)
.set_attr<nnvm::FInferType>("FInferType", DiagOpType)
.set_attr<FCompute>("FCompute<cpu>", DiagOpForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_diag"})
.add_argument("data", "NDArray-or-Symbol", "Input ndarray")
.add_arguments(DiagParam::__FIELDS__());


NNVM_REGISTER_OP(_backward_diag)
.set_attr_parser(ParamParser<DiagParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", DiagOpBackward<cpu>);


} // namespace op
} // namespace mxnet
Loading