Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.5.x] Added sub and mul to ONNX->TensorRT conversion (#15344) #15875

Merged
merged 1 commit into from
Aug 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ mxnet_option(ENABLE_CUDA_RTC "Build with CUDA runtime compilation support"
mxnet_option(BUILD_CPP_EXAMPLES "Build cpp examples" ON)
mxnet_option(INSTALL_EXAMPLES "Install the example source files." OFF)
mxnet_option(USE_SIGNAL_HANDLER "Print stack traces on segfaults." ON)
mxnet_option(USE_TENSORRT "Enable infeference optimization with TensorRT." OFF)
mxnet_option(USE_TENSORRT "Enable inference optimization with TensorRT." OFF)
mxnet_option(USE_ASAN "Enable Clang/GCC ASAN sanitizers." OFF)
mxnet_option(ENABLE_TESTCOVERAGE "Enable compilation with test coverage metric output" OFF)
mxnet_option(USE_INT64_TENSOR_SIZE "Use int64_t to represent the total number of elements in a tensor" OFF)
Expand Down
12 changes: 12 additions & 0 deletions src/operator/subgraph/tensorrt/nnvm_to_onnx-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -126,6 +126,16 @@ void ConvertElementwiseAdd(NodeProto *node_proto,
const nnvm::IndexedGraph &ig,
const array_view<IndexedGraph::NodeEntry> &inputs);

void ConvertElementwiseSub(NodeProto *node_proto,
const NodeAttrs &attrs,
const nnvm::IndexedGraph &ig,
const array_view<IndexedGraph::NodeEntry> &inputs);

void ConvertElementwiseMul(NodeProto *node_proto,
const NodeAttrs &attrs,
const nnvm::IndexedGraph &ig,
const array_view<IndexedGraph::NodeEntry> &inputs);

void ConvertConcatenate(NodeProto *node_proto,
const NodeAttrs &attrs,
const nnvm::IndexedGraph &ig,
Expand All @@ -152,6 +162,8 @@ static const std::unordered_map<std::string, ConverterFunction> converter_map =
{"Concat", ConvertConcatenate},
{"Dropout", ConvertDropout},
{"elemwise_add", ConvertElementwiseAdd},
{"elemwise_sub", ConvertElementwiseSub},
{"elemwise_mul", ConvertElementwiseMul},
{"Flatten", ConvertFlatten},
{"FullyConnected", ConvertFullyConnected},
{"Pad", ConvertPad},
Expand Down
12 changes: 12 additions & 0 deletions src/operator/subgraph/tensorrt/nnvm_to_onnx.cc
Original file line number Diff line number Diff line change
Expand Up @@ -393,6 +393,18 @@ void ConvertElementwiseAdd(NodeProto* node_proto, const NodeAttrs& /*attrs*/,
node_proto->set_op_type("Add");
}

void ConvertElementwiseSub(NodeProto* node_proto, const NodeAttrs& /*attrs*/,
const nnvm::IndexedGraph& /*ig*/,
const array_view<IndexedGraph::NodeEntry>& /*inputs*/) {
node_proto->set_op_type("Sub");
}

void ConvertElementwiseMul(NodeProto* node_proto, const NodeAttrs& /*attrs*/,
const nnvm::IndexedGraph& /*ig*/,
const array_view<IndexedGraph::NodeEntry>& /*inputs*/) {
node_proto->set_op_type("Mul");
}

void ConvertConcatenate(NodeProto* node_proto, const NodeAttrs& attrs,
const nnvm::IndexedGraph& /*ig*/,
const array_view<IndexedGraph::NodeEntry>& /*inputs*/) {
Expand Down
68 changes: 68 additions & 0 deletions tests/python/tensorrt/test_ops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

from mxnet.test_utils import assert_almost_equal
import mxnet as mx
import numpy as np
import os

def check_elementwise_random(op='sum', shape=(1, 3, 224, 224)):
"""
Check elementwise operators with vanilla/TensorRT executors with uniform random tensors
"""
a = mx.sym.Variable('a')
b = mx.sym.Variable('b')
if op == 'sum':
sym = a + b
elif op == 'sub':
sym = a - b
elif op == 'mul':
sym = a * b

a_data = mx.ndarray.random.uniform(shape=shape, ctx=mx.gpu())
b_data = mx.ndarray.random.uniform(shape=shape, ctx=mx.gpu())

executor = sym.simple_bind(ctx=mx.gpu(), a=shape, b=shape,
grad_req='null', force_rebind=True)
y = executor.forward(is_train=False, a=a_data, b=b_data)
trt_sym = sym.get_backend_symbol('TensorRT')
original_precision_value = mx.contrib.tensorrt.get_use_fp16()
try:
mx.contrib.tensorrt.set_use_fp16(True)
executor = trt_sym.simple_bind(ctx=mx.gpu(), a=shape, b=shape,
grad_req='null', force_rebind=True)
y_trt = executor.forward(is_train=False, a=a_data, b=b_data)
mx.contrib.tensorrt.set_use_fp16(False)
executor = trt_sym.simple_bind(ctx=mx.gpu(), a=shape, b=shape,
grad_req='null', force_rebind=True)
y_trt_fp32 = executor.forward(is_train=False, a=a_data, b=b_data)
assert_almost_equal(y[0].asnumpy(), y_trt[0].asnumpy(), 1e-1, 1e-2)
assert_almost_equal(y[0].asnumpy(), y_trt_fp32[0].asnumpy(), 1e-4, 1e-4)
finally:
mx.contrib.tensorrt.set_use_fp16(original_precision_value)


def test_elementwise():
for op in ['sum', 'sub', 'mul']:
for shape in [(20, 25), (3, 4, 20), (1, 3, 20, 25), (10, 10, 100, 100)]:
for itry in range(10):
check_elementwise_random(op, shape)


if __name__ == '__main__':
import nose
nose.runmodule()