Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add rolling window support to 'Big Number with Trendline' viz #9107

Merged
merged 2 commits into from
Mar 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions superset-frontend/src/explore/controlPanels/BigNumber.js
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
* under the License.
*/
import { t } from '@superset-ui/translation';
import React from 'react';

export default {
controlPanelSections: [
Expand All @@ -43,6 +44,14 @@ export default {
['subheader_font_size'],
],
},
{
label: t('Advanced Analytics'),
expanded: false,
controlSetRows: [
[<h1 className="section-header">{t('Rolling Window')}</h1>],
['rolling_type', 'rolling_periods', 'min_periods'],
],
},
],
controlOverrides: {
y_axis_format: {
Expand Down
2 changes: 1 addition & 1 deletion superset-frontend/src/explore/controlPanels/sections.jsx
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ export const NVD3TimeSeries = [
'of query results',
),
controlSetRows: [
[<h1 className="section-header">{t('Moving Average')}</h1>],
[<h1 className="section-header">{t('Rolling Window')}</h1>],
['rolling_type', 'rolling_periods', 'min_periods'],
[<h1 className="section-header">{t('Time Comparison')}</h1>],
['time_compare', 'comparison_type'],
Expand Down
2 changes: 1 addition & 1 deletion superset-frontend/src/explore/controls.jsx
Original file line number Diff line number Diff line change
Expand Up @@ -1126,7 +1126,7 @@ export const controls = {

rolling_type: {
type: 'SelectControl',
label: t('Rolling'),
label: t('Rolling Function'),
default: 'None',
choices: formatSelectOptions(['None', 'mean', 'sum', 'std', 'cumsum']),
description: t(
Expand Down
45 changes: 32 additions & 13 deletions superset/examples/birth_names.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,22 +106,23 @@ def load_birth_names(only_metadata=False, force=False):
obj.fetch_metadata()
tbl = obj

metrics = [
{
"expressionType": "SIMPLE",
"column": {"column_name": "num", "type": "BIGINT"},
"aggregate": "SUM",
"label": "Births",
"optionName": "metric_11",
}
]
metric = "sum__num"

defaults = {
"compare_lag": "10",
"compare_suffix": "o10Y",
"limit": "25",
"granularity_sqla": "ds",
"groupby": [],
"metric": "sum__num",
"metrics": [
{
"expressionType": "SIMPLE",
"column": {"column_name": "num", "type": "BIGINT"},
"aggregate": "SUM",
"label": "Births",
"optionName": "metric_11",
}
],
"row_limit": config["ROW_LIMIT"],
"since": "100 years ago",
"until": "now",
Expand All @@ -144,14 +145,17 @@ def load_birth_names(only_metadata=False, force=False):
granularity_sqla="ds",
compare_lag="5",
compare_suffix="over 5Y",
metric=metric,
),
),
Slice(
slice_name="Genders",
viz_type="pie",
datasource_type="table",
datasource_id=tbl.id,
params=get_slice_json(defaults, viz_type="pie", groupby=["gender"]),
params=get_slice_json(
defaults, viz_type="pie", groupby=["gender"], metric=metric
),
),
Slice(
slice_name="Trends",
Expand All @@ -165,6 +169,7 @@ def load_birth_names(only_metadata=False, force=False):
granularity_sqla="ds",
rich_tooltip=True,
show_legend=True,
metrics=metrics,
),
),
Slice(
Expand Down Expand Up @@ -215,6 +220,7 @@ def load_birth_names(only_metadata=False, force=False):
adhoc_filters=[gen_filter("gender", "girl")],
row_limit=50,
timeseries_limit_metric="sum__num",
metrics=metrics,
),
),
Slice(
Expand All @@ -231,6 +237,7 @@ def load_birth_names(only_metadata=False, force=False):
rotation="square",
limit="100",
adhoc_filters=[gen_filter("gender", "girl")],
metric=metric,
),
),
Slice(
Expand All @@ -243,6 +250,7 @@ def load_birth_names(only_metadata=False, force=False):
groupby=["name"],
adhoc_filters=[gen_filter("gender", "boy")],
row_limit=50,
metrics=metrics,
),
),
Slice(
Expand All @@ -259,6 +267,7 @@ def load_birth_names(only_metadata=False, force=False):
rotation="square",
limit="100",
adhoc_filters=[gen_filter("gender", "boy")],
metric=metric,
),
),
Slice(
Expand All @@ -276,6 +285,7 @@ def load_birth_names(only_metadata=False, force=False):
time_grain_sqla="P1D",
viz_type="area",
x_axis_forma="smart_date",
metrics=metrics,
),
),
Slice(
Expand All @@ -293,6 +303,7 @@ def load_birth_names(only_metadata=False, force=False):
time_grain_sqla="P1D",
viz_type="area",
x_axis_forma="smart_date",
metrics=metrics,
),
),
]
Expand All @@ -314,14 +325,15 @@ def load_birth_names(only_metadata=False, force=False):
},
metric_2="sum__num",
granularity_sqla="ds",
metrics=metrics,
),
),
Slice(
slice_name="Num Births Trend",
viz_type="line",
datasource_type="table",
datasource_id=tbl.id,
params=get_slice_json(defaults, viz_type="line"),
params=get_slice_json(defaults, viz_type="line", metrics=metrics),
),
Slice(
slice_name="Daily Totals",
Expand All @@ -335,6 +347,7 @@ def load_birth_names(only_metadata=False, force=False):
since="40 years ago",
until="now",
viz_type="table",
metrics=metrics,
),
),
Slice(
Expand Down Expand Up @@ -397,6 +410,7 @@ def load_birth_names(only_metadata=False, force=False):
datasource_id=tbl.id,
params=get_slice_json(
defaults,
metrics=metrics,
groupby=["name"],
row_limit=50,
timeseries_limit_metric={
Expand All @@ -417,6 +431,7 @@ def load_birth_names(only_metadata=False, force=False):
datasource_id=tbl.id,
params=get_slice_json(
defaults,
metric=metric,
viz_type="big_number_total",
granularity_sqla="ds",
adhoc_filters=[gen_filter("gender", "girl")],
Expand All @@ -429,7 +444,11 @@ def load_birth_names(only_metadata=False, force=False):
datasource_type="table",
datasource_id=tbl.id,
params=get_slice_json(
defaults, viz_type="pivot_table", groupby=["name"], columns=["state"]
defaults,
viz_type="pivot_table",
groupby=["name"],
columns=["state"],
metrics=metrics,
),
),
]
Expand Down
32 changes: 19 additions & 13 deletions superset/examples/world_bank.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,31 +97,32 @@ def load_world_bank_health_n_pop(
db.session.commit()
tbl.fetch_metadata()

metric = "sum__SP_POP_TOTL"
metrics = ["sum__SP_POP_TOTL"]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is more a general comment relating to the current structure of examples, not specifically this PR. But given the fact that metrics is already defined above (line 80), it might be a good idea to disambiguate here. For example default_metrics, total_population_metrics or similar.

Another option, which I personally would prefer, would be to remove the legacy metrics above, and replace both metric and metrics here with adhoc metrics. Something like

total_population_metric = {
    ...
}

and later on where a metrics list is expected, just passing a [total_population_metric] to highlight that it's a single value list.

secondary_metric = {
"aggregate": "SUM",
"column": {
"column_name": "SP_RUR_TOTL",
"optionName": "_col_SP_RUR_TOTL",
"type": "DOUBLE",
},
"expressionType": "SIMPLE",
"hasCustomLabel": True,
"label": "Rural Population",
}
Comment on lines +102 to +112
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For readability later on in the code, calling this rural_population_metric or similar would be preferable.


defaults = {
"compare_lag": "10",
"compare_suffix": "o10Y",
"limit": "25",
"granularity_sqla": "year",
"groupby": [],
"metric": "sum__SP_POP_TOTL",
"metrics": ["sum__SP_POP_TOTL"],
"row_limit": config["ROW_LIMIT"],
"since": "2014-01-01",
"until": "2014-01-02",
"time_range": "2014-01-01 : 2014-01-02",
"markup_type": "markdown",
"country_fieldtype": "cca3",
"secondary_metric": {
"aggregate": "SUM",
"column": {
"column_name": "SP_RUR_TOTL",
"optionName": "_col_SP_RUR_TOTL",
"type": "DOUBLE",
},
"expressionType": "SIMPLE",
"hasCustomLabel": True,
"label": "Rural Population",
},
"entity": "country_code",
"show_bubbles": True,
}
Expand Down Expand Up @@ -207,6 +208,7 @@ def load_world_bank_health_n_pop(
viz_type="world_map",
metric="sum__SP_RUR_TOTL_ZS",
num_period_compare="10",
secondary_metric=secondary_metric,
),
),
Slice(
Expand Down Expand Up @@ -264,6 +266,8 @@ def load_world_bank_health_n_pop(
groupby=["region", "country_name"],
since="2011-01-01",
until="2011-01-01",
metric=metric,
secondary_metric=secondary_metric,
),
),
Slice(
Expand All @@ -277,6 +281,7 @@ def load_world_bank_health_n_pop(
until="now",
viz_type="area",
groupby=["region"],
metrics=metrics,
),
),
Slice(
Expand All @@ -292,6 +297,7 @@ def load_world_bank_health_n_pop(
x_ticks_layout="staggered",
viz_type="box_plot",
groupby=["region"],
metrics=metrics,
),
),
Slice(
Expand Down
50 changes: 33 additions & 17 deletions superset/viz.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,26 @@ def run_extra_queries(self):
"""
pass

def apply_rolling(self, df):
fd = self.form_data
rolling_type = fd.get("rolling_type")
rolling_periods = int(fd.get("rolling_periods") or 0)
min_periods = int(fd.get("min_periods") or 0)

if rolling_type in ("mean", "std", "sum") and rolling_periods:
kwargs = dict(window=rolling_periods, min_periods=min_periods)
if rolling_type == "mean":
df = df.rolling(**kwargs).mean()
elif rolling_type == "std":
df = df.rolling(**kwargs).std()
elif rolling_type == "sum":
df = df.rolling(**kwargs).sum()
elif rolling_type == "cumsum":
df = df.cumsum()
if min_periods:
df = df[min_periods:]
return df
Comment on lines +181 to +199
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍


def get_samples(self):
query_obj = self.query_obj()
query_obj.update(
Expand Down Expand Up @@ -1101,6 +1121,18 @@ def query_obj(self):
self.form_data["metric"] = metric
return d

def get_data(self, df: pd.DataFrame) -> VizData:
df = df.pivot_table(
index=DTTM_ALIAS,
columns=[],
values=self.metric_labels,
fill_value=0,
aggfunc=sum,
)
df = self.apply_rolling(df)
df[DTTM_ALIAS] = df.index
return super().get_data(df)


class BigNumberTotalViz(BaseViz):

Expand Down Expand Up @@ -1225,23 +1257,7 @@ def process_data(self, df: pd.DataFrame, aggregate: bool = False) -> VizData:
dfs.sort_values(ascending=False, inplace=True)
df = df[dfs.index]

rolling_type = fd.get("rolling_type")
rolling_periods = int(fd.get("rolling_periods") or 0)
min_periods = int(fd.get("min_periods") or 0)

if rolling_type in ("mean", "std", "sum") and rolling_periods:
kwargs = dict(window=rolling_periods, min_periods=min_periods)
if rolling_type == "mean":
df = df.rolling(**kwargs).mean()
elif rolling_type == "std":
df = df.rolling(**kwargs).std()
elif rolling_type == "sum":
df = df.rolling(**kwargs).sum()
elif rolling_type == "cumsum":
df = df.cumsum()
if min_periods:
df = df[min_periods:]

df = self.apply_rolling(df)
if fd.get("contribution"):
dft = df.T
df = (dft / dft.sum()).T
Expand Down
Loading