Skip to content

A lightweight and efficient English to Tamil translation model implementation using Google's Gemma 2b. This project aims to bridge language barriers while maintaining cultural nuances and context.

Notifications You must be signed in to change notification settings

arsath-eng/arsath-eng-Gemma-model-En-Ta

Repository files navigation

🌏 English to Tamil Translator App

Tamil Translator Banner

📝 Description

A powerful Streamlit-based application that provides English to Tamil translation with two specialized modes: normal translation and contextual translation. Built using the Groq API and Llama 3.2 model for accurate translations.

App Demo

✨ Features

  • 🔄 Two Translation Modes:
    • 📝 Normal Translation
    • 🧠 Contextual Translation with domain awareness
  • 📚 Multiple Domain Support:
    • Technical
    • Medical
    • Legal
    • Literary
    • Business
    • Academic
  • ♾️ Unlimited Text Length Support
  • 📜 Translation History
  • 💾 Export Options with Metadata
  • 🎯 Progress Tracking

🖥️ Screenshots

Normal Translation Mode

Normal Translation

Translation History

Translation History

🚀 Getting Started

Prerequisites

  • Python 3.8 or higher
  • Groq API key
  • Git

Installation

  1. Clone the repository
git clone https://github.com/YOUR_USERNAME/tamil-translator.git
cd tamil-translator
  1. Create and activate virtual environment
# Windows
python -m venv venv
venv\Scripts\activate

# Linux/Mac
python -m venv venv
source venv/bin/activate
  1. Install dependencies
pip install -r requirements.txt
  1. Set up environment variables Create a .env file in the project root:
GROQ_API_KEY=your_groq_api_key_here
  1. Run the application
streamlit run translator2.py

💻 Usage

  1. Select translation mode (Normal/Contextual)
  2. Choose domain (for contextual translation)
  3. Enter English text
  4. Click "Translate"
  5. Download or copy the translation

🛠️ Technical Architecture

graph TD
    A[User Input] --> B[Translation Manager]
    B --> C{Translation Mode}
    C -->|Normal| D[Direct Translation]
    C -->|Contextual| E[Domain-Specific Translation]
    D --> F[Output]
    E --> F
    F --> G[History/Export]
Loading

📱 Application Structure

tamil-translator/
├── translator2.py        # Main application file
├── .env                 # Environment variables
├── requirements.txt     # Dependencies
├── README.md           # Documentation
└── screenshots/        # Application screenshots
    ├── banner.png
    ├── main-interface.png
    ├── normal-translation.png
    ├── contextual-translation.png
    ├── history.png
    └── usage-guide.png

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

🙏 Acknowledgments

  • Groq API for providing the translation capabilities
  • Streamlit for the web interface framework
  • Gemma2 model for accurate translations

About

A lightweight and efficient English to Tamil translation model implementation using Google's Gemma 2b. This project aims to bridge language barriers while maintaining cultural nuances and context.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages