Skip to content

cdt15/lingd

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LiNG Discovery Algorithm

If you use LiNGD, install R and the muRty package and set the path to Rscript.

Installation

pip install git+https://github.com/cdt15/lingd.git

Usage

from lingd import LiNGD

# create instance and fit to the data.
model = LiNGD()
model.fit(X)

# estimated results
print(model.adjacency_matrices_)

print(model.costs_)

print(model.is_stables_)

# effects of causal effects
print(model.estimate_causal_effects(1))

Example

lingd/examples/lingd.ipynb

References

  • Gustavo Lacerda, Peter Spirtes, Joseph Ramsey, and Patrik O. Hoyer. Discovering cyclic causal models by independent components analysis. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI'08). AUAI Press, Arlington, Virginia, USA, 366– 374.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published