If you use LiNGD, install R and the muRty package and set the path to Rscript.
pip install git+https://github.com/cdt15/lingd.git
from lingd import LiNGD
# create instance and fit to the data.
model = LiNGD()
model.fit(X)
# estimated results
print(model.adjacency_matrices_)
print(model.costs_)
print(model.is_stables_)
# effects of causal effects
print(model.estimate_causal_effects(1))
- Gustavo Lacerda, Peter Spirtes, Joseph Ramsey, and Patrik O. Hoyer. Discovering cyclic causal models by independent components analysis. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI'08). AUAI Press, Arlington, Virginia, USA, 366– 374.