Skip to content

Dynamic Environments with Deformable Objects (DEDO)

License

Notifications You must be signed in to change notification settings

contactrika/dedo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DEDO  - Dynamic Environments with Deformable Objects

DEDO - Dynamic Environments with Deformable Objects

DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed for researchers in the machine learning, reinforcement learning, robotics and computer vision communities. The suite provides a set of every day tasks that involve deformables, such as hanging cloth, dressing a person, and buttoning buttons. We provide examples for integrating two popular reinforcement learning libraries: StableBaselines3 and RLlib. We also provide reference implementaionts for training a various Variational Autoencoder variants with our environment. DEDO is easy to set up and has few dependencies, it is highly parallelizable and supports a wide range of customizations: loading custom objects and textures, adjusting material properties.

For a brief overview, please see our intro video. For more details please see the paper.

@inproceedings{dedo2021,
  title={Dynamic Environments with Deformable Objects},
  author={Rika Antonova and Peiyang Shi and Hang Yin and Zehang Weng and Danica Kragic},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track},
  year={2021},
}

Table of Contents:
Installation
GettingStarted
Tasks
Use with RL
Use with VAE
Customization

Please refer to Wiki for the full documentation

Installation

Optional initial step: create a new conda environment with conda create --name dedo python=3.7 and activate it with conda activate dedo. Conda is not strictly needed, alternatives like virtualenv can be used; a direct install without using virtual environments is ok as well.

git clone https://github.com/contactrika/dedo
cd dedo
pip install numpy  # important: for numpy-enabled PyBullet
pip install -e .

Python3.7 is recommended, since PyBullet compilation can have difficulties with Python 3.8 in some cases.

To enable recording/logging videos install ffmpeg:

sudo apt-get install ffmpeg

See more in Installation Guide in wiki

Getting started

To get started, one can run one of the following commands to visualize the tasks through a hard-coded policy.

python -m dedo.demo --env=HangGarment-v1 --viz --debug
  • dedo.demo is the demo module
  • --env=HangGarment-v1 specifies the environment
  • --viz enables the GUI
  • ---debug outputs additional information in the console
  • --cam_resolution 400 specifies the size of the output window

See more in Usage-guide

Tasks

See more in Task Overview

We provide a set of 10 tasks involving deformable objects, most tasks contains 5 handmade deformable objects. There are also two procedurally generated tasks, ButtonProc and HangProcCloth, in which the deformable objects are procedurally generated. Furthermore, to improve generalzation, the v0 of each task will randomizes textures and meshes.

All tasks have -v1 and -v2 with a particular choice of meshes and textures that is not randomized. Most tasks have versions up to -v5 with additional mesh and texture variations.

Tasks with procedurally generated cloth (ButtonProc and HangProcCloth) generate random cloth objects for all versions (but randomize textures only in v0).

HangBag

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangBag-v1 --viz

HangBag-v0: selects one of 108 bag meshes; randomized textures

HangBag-v[1-3]: three bag versions with textures shown below:

images/imgs/hang_bags_annotated.jpg

HangGarment

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangGarment-v1 --viz

HangGarment-v0: hang garment with randomized textures (a few examples below):

HangGarment-v[1-5]: 5 apron meshes and texture combos shown below:

images/imgs/hang_garments_5.jpg

HangGarment-v[6-10]: 5 shirt meshes and texture combos shown below:

images/imgs/hang_shirts_5.jpg

HangProcCloth

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=HangProcCloth-v1 --viz

HangProcCloth-v0: random textures, procedurally generated cloth with 1 and 2 holes.

HangProcCloth-v[1-2]: same, but with either 1 or 2 holes

images/imgs/hang_proc_cloth.jpg

Buttoning

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Button-v1 --viz

ButtonProc-v0: randomized textures and procedurally generated cloth with 2 holes, randomized hole/button positions.

ButtonProc-v[1-2]: procedurally generated cloth, 1 or two holes.

images/imgs/button_proc.jpg

Button-v0: randomized textures, but fixed cloth and button positions.

Button-v1: fixed cloth and button positions with one texture (see image below):

images/imgs/button.jpg

Hoop

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Hoop-v1 --viz

Hoop-v0: randomized textures Hoop-v1: pre-selected textures images/imgs/hoop_and_lasso.jpg

Lasso

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=Lasso-v1 --viz

Lasso-v0: randomized textures Lasso-v1: pre-selected textures

DressBag

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=DressBag-v1 --viz

DressBag-v0, DressBag-v[1-5]: demo for -v1 shown below

images/imgs/dress_bag.jpg

Visualizations of the 5 backpack mesh and texture variants for DressBag-v[1-5]:

images/imgs/backpack_meshes.jpg

DressGarment

images/gifs/HangGarment-v1.gif

python -m dedo.demo_preset --env=DressGarment-v1 --viz

DressGarment-v0, DressGarment-v[1-5]: demo for -v1 shown below

images/imgs/dress_garment.jpg

Mask

images/gifs/Mask-v1.gif

python -m dedo.demo_preset --env=Mask-v1 --viz

Mask-v0, Mask-v[1-5]: a few texture variants shown below: images/imgs/dress_garment.jpg

HangGarmentRobot

python -m dedo.demo_preset --env=HangGarmentRobot-v1 --viz

HangGarmentRobot-v1: A environment for demonstrating integration with Franka Robot Arm images/gifs/HangGarmentRobot-v1.gif

FoodPacking

python -m dedo.demo_preset --env=FoodPacking-v1 --viz

FoodPacking-v[0-3]: Demonstrating robotic manipulation of pushing YCB objects

images/gifs/FoodPacking-v1.gif

Rendering Point Cloud Observations

DEDO now supports pointcloud observations. Use the flag --pcd to set the environment observations to return point clouds. They are segmented based on the active rigid and deformable object.

Example usage, visual demo

python -m dedo.demo --env=HangGarment-v1 --viz --debug --pcd --logdir rendered
python -m dedo.demo --env=HangBag-v1 --viz --debug --pcd --logdir rendered

images/gifs/HangGarment-v1_pcd.gif

Example usage, preset trajectory demo

python -m dedo.demo_preset --env=HangGarment-v1 --viz --debug --pcd --logdir rendered
python -m dedo.demo_preset --env=HangBag-v1 --viz --debug --pcd --logdir rendered

images/gifs/HangGarment-v1_pcd.gif

Known issues:

  • PyBullet can only segment the deformable object if it has ID=0. We assume this to be true, and load the deformable object first. However, this seems to cause the floor to disappear in the visual render.

RL Examples

dedo/run_rl_sb3.py gives an example of how to train an RL algorithm from Stable Baselines 3:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

dedo/run_rllib.py gives an example of how to train an RL algorithm using RLLib:

python -m dedo.run_rllib --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

For documentation, please refer to Arguments Reference page in wiki

To launch the Tensorboard:

tensorboard --logdir=/tmp/dedo --bind_all --port 6006 \
  --samples_per_plugin images=1000

SVAE Examples

dedo/run_svae.py gives an example of how to train various flavors of VAE:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

dedo/run_rllib.py gives an example of how to train an RL algorithm from Stable Baselines 3:

python -m dedo.run_rl_sb3 --env=HangGarment-v0 \
    --logdir=/tmp/dedo --num_play_runs=3 --viz --debug

To launch the Tensorboard:

tensorboard --logdir=/tmp/dedo --bind_all --port 6006 \
  --samples_per_plugin images=1000

Customization

To load custom object you would first have to fill an entry in DEFORM_INFO in task_info.py. The key should the the .obj file path relative to data/:

DEFORM_INFO = {
...
    # An example of info for a custom item.
    'bags/custom.obj': {
        'deform_init_pos': [0, 0.47, 0.47],
        'deform_init_ori': [np.pi/2, 0, 0],
        'deform_scale': 0.1,
        'deform_elastic_stiffness': 1.0,
        'deform_bending_stiffness': 1.0,
        'deform_true_loop_vertices': [
            [0, 1, 2, 3]  # placeholder, since we don't know the true loops
        ]
    },

Then you can use --override_deform_obj flag:

python -m dedo.demo --env=HangBag-v0 --cam_resolution 200 --viz --debug \
    --override_deform_obj bags/custom.obj

For items not in DEFORM_DICT you will need to specify sensible defaults, for example:

python -m dedo.demo --env=HangGarment-v0 --viz --debug \
  --override_deform_obj=generated_cloth/generated_cloth.obj \
  --deform_init_pos 0.02 0.41 0.63 --deform_init_ori 0 0 1.5708

Example of scaling up the custom mesh objects:

python -m dedo.demo --env=HangGarment-v0 --viz --debug \
   --override_deform_obj=generated_cloth/generated_cloth.obj \
   --deform_init_pos 0.02 0.41 0.55 --deform_init_ori 0 0 1.5708 \
   --deform_scale 2.0 --anchor_init_pos -0.10 0.40 0.70 \
   --other_anchor_init_pos 0.10 0.40 0.70

See more in Customization Wiki

Additonal Assets

BGarment dataset is adapter from Berkeley Garment Library

Sewing dataset is adapted from Generating Datasets of 3D Garments with Sewing Patterns