Skip to content

Commit

Permalink
add support for odd case in sqrt_pst
Browse files Browse the repository at this point in the history
  • Loading branch information
maramihali committed Mar 10, 2023
1 parent 13f6efb commit df9e890
Show file tree
Hide file tree
Showing 5 changed files with 37 additions and 48 deletions.
2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ parallel = [ "std", "ark-ff/parallel", "ark-std/parallel", "ark-ec/parallel", "a
std = ["ark-ff/std", "ark-ec/std", "ark-std/std", "ark-relations/std", "ark-serialize/std"]

[patch.crates-io]
ark-poly-commit = {git = "https://github.com/cryptonetlab/ark-polycommit", branch="feat/pst_on_g2"}
ark-poly-commit = {git = "https://github.com/cryptonetlab/ark-polycommit", branch="feat/variable-crs"}
ark-groth16 = { git = "https://github.com/arkworks-rs/groth16" }
blstrs = { git = "https://github.com/nikkolasg/blstrs", branch = "feat/arkwork" }
ark-ec = { git = "https://github.com/vmx/algebra", branch = "affine-repr-xy-owned" }
Expand Down
2 changes: 1 addition & 1 deletion benches/testudo.rs
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ where
E::ScalarField: Absorb,
{
let mut writer = csv::Writer::from_path(file_name).expect("unable to open csv writer");
for &s in [4, 10, 12, 14, 16, 18, 20, 22, 24, 26].iter() {
for &s in [4, 5, 10, 12, 14, 16, 18, 20, 22, 24, 26].iter() {
println!("Running for {} inputs", s);
let mut br = BenchmarkResults::default();
let num_vars = (2_usize).pow(s as u32);
Expand Down
6 changes: 3 additions & 3 deletions src/dense_mlpoly.rs
Original file line number Diff line number Diff line change
Expand Up @@ -185,12 +185,12 @@ impl<E: Pairing> PolyCommitmentGens<E> {
pub fn setup(num_vars: usize, label: &'static [u8]) -> PolyCommitmentGens<E> {
let (_left, right) = EqPolynomial::<E::ScalarField>::compute_factored_lens(num_vars);
let gens = DotProductProofGens::new(right.pow2(), label);

let odd = if num_vars % 2 == 1 { 1 } else { 0 };
// Generates the SRS and trims it based on the number of variables in the
// multilinear polynomial.
let mut rng = ark_std::test_rng();
let pst_gens = MultilinearPC::<E>::setup(num_vars / 2, &mut rng);
let (ck, vk) = MultilinearPC::<E>::trim(&pst_gens, num_vars / 2);
let pst_gens = MultilinearPC::<E>::setup(num_vars / 2 + odd, &mut rng);
let (ck, vk) = MultilinearPC::<E>::trim(&pst_gens, num_vars / 2 + odd);

PolyCommitmentGens { gens, ck, vk }
}
Expand Down
2 changes: 1 addition & 1 deletion src/mipp.rs
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ impl<E: Pairing> MippProof<E> {

let check_u = ref_final_res.uc == final_u;
assert!(check_u == true);
check_h & check_u & check_t
check_h & check_u
}
}

Expand Down
73 changes: 31 additions & 42 deletions src/sqrt_pst.rs
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ use crate::{

pub struct Polynomial<E: Pairing> {
m: usize,
odd: bool,
odd: usize,
polys: Vec<DensePolynomial<E::ScalarField>>,
q: Option<DensePolynomial<E::ScalarField>>,
chis_b: Option<Vec<E::ScalarField>>,
Expand All @@ -30,36 +30,41 @@ impl<E: Pairing> Polynomial<E> {
let pl_timer = Timer::new("poly_list_build");
// check the evaluation list is a power of 2
debug_assert!(Z.len() & (Z.len() - 1) == 0);
let m_col = Z.len().log_2() / 2;
let m_row = if Z.len().log_2() % 2 == 0 {

let num_vars = Z.len().log_2();
let m_col = num_vars / 2;
let m_row = if num_vars % 2 == 0 {
Z.len().log_2() / 2
} else {
Z.len().log_2() / 2 + 1
};
println!("{:?}", m_row);

let pow_m_col = 2_usize.pow(m_col as u32);
let pow_m_row = 2_usize.pow(m_row as u32);

let polys: Vec<DensePolynomial<E::ScalarField>> = (0..pow_m_col)
.into_par_iter()
.map(|i| {
let z: Vec<E::ScalarField> = (0..pow_m_row)
.into_par_iter()
// viewing the list of evaluation as a square matrix
// we select by row j and column i

// to handle the odd case, we add another row to the matrix
//
// to handle the odd case, we add another row to the matrix i.e.
// we add an extra variable to the polynomials while keeping their
// number tje same
.map(|j| Z[(j << m_col) | i])
.collect();
DensePolynomial::new(z)
})
.collect();

debug_assert!(polys.len() == pow_m_col);
debug_assert!(polys[0].len == pow_m_row);

pl_timer.stop();
Self {
m: m_col,
odd: if m_row % 2 == 0 { false } else { true },
odd: if num_vars % 2 == 1 { 1 } else { 0 },
polys,
q: None,
chis_b: None,
Expand All @@ -72,17 +77,17 @@ impl<E: Pairing> Polynomial<E> {
// and p(a,b) = q(a) where p is the initial polynomial
fn get_q(&mut self, point: &[E::ScalarField]) {
let q_timer = Timer::new("build_q");
let odd = if self.odd { 1 } else { 0 };
debug_assert!(point.len() == 2 * self.m + odd);
let b = &point[self.m + odd..];

debug_assert!(point.len() == 2 * self.m + self.odd);
let b = &point[self.m + self.odd..];
let pow_m = 2_usize.pow(self.m as u32);

let chis: Vec<E::ScalarField> = (0..pow_m)
.into_par_iter()
.map(|i| Self::get_chi_i(b, i))
.collect();

let z_q: Vec<E::ScalarField> = (0..(pow_m * 2_usize.pow(odd as u32)))
let z_q: Vec<E::ScalarField> = (0..(pow_m * 2_usize.pow(self.odd as u32)))
.into_par_iter()
.map(|j| (0..pow_m).map(|i| self.polys[i].Z[j] * chis[i]).sum())
.collect();
Expand All @@ -95,8 +100,7 @@ impl<E: Pairing> Polynomial<E> {
// Given point = (\vec{a}, \vec{b}) used to construct q
// compute q(a) = p(a,b).
pub fn eval(&mut self, point: &[E::ScalarField]) -> E::ScalarField {
let odd = if self.odd { 1 } else { 0 };
let a = &point[0..point.len() / 2 + odd];
let a = &point[0..point.len() / 2 + self.odd];
if self.q.is_none() {
self.get_q(point);
}
Expand All @@ -109,9 +113,7 @@ impl<E: Pairing> Polynomial<E> {

pub fn commit(&self, ck: &CommitterKey<E>) -> (Vec<Commitment<E>>, E::TargetField) {
let timer_commit = Timer::new("sqrt_commit");

let timer_list = Timer::new("comm_list");

// commit to each of the sqrt sized p_i
let comm_list: Vec<Commitment<E>> = self
.polys
Expand All @@ -120,8 +122,7 @@ impl<E: Pairing> Polynomial<E> {
.collect();
timer_list.stop();

let mut h_vec = ck.powers_of_h[0].clone();
h_vec = h_vec[..comm_list.len()].to_vec();
let h_vec = ck.powers_of_h[self.odd].clone();
assert!(comm_list.len() == h_vec.len());

let ipp_timer = Timer::new("ipp");
Expand Down Expand Up @@ -169,8 +170,7 @@ impl<E: Pairing> Polynomial<E> {
point: &[E::ScalarField],
t: &E::TargetField,
) -> (Commitment<E>, Proof<E>, MippProof<E>) {
let odd = if self.odd { 1 } else { 0 };
let a = &point[0..self.m + 1];
let a = &point[0..self.m + self.odd];
if self.q.is_none() {
self.get_q(point);
}
Expand Down Expand Up @@ -201,8 +201,7 @@ impl<E: Pairing> Polynomial<E> {
};
let comm = MultilinearPC::<E>::commit(ck, &q);
debug_assert!(c_u == comm.g_product);
let mut h_vec = ck.powers_of_h[0].clone();
h_vec = h_vec[..comm_list.len()].to_vec();
let h_vec = ck.powers_of_h[self.odd].clone();

// construct MIPP proof that U is the inner product of the vector A
// and the vector y, where A is the opening vector to T
Expand Down Expand Up @@ -275,7 +274,7 @@ mod tests {
#[test]
fn check_sqrt_poly_eval() {
let mut rng = ark_std::test_rng();
let num_vars = 5;
let num_vars = 6;
let len = 2_usize.pow(num_vars);
let Z: Vec<F> = (0..len).into_iter().map(|_| F::rand(&mut rng)).collect();
let r: Vec<F> = (0..num_vars)
Expand All @@ -293,9 +292,16 @@ mod tests {
}

#[test]
fn check_new_poly_commit() {
fn check_commit() {
// check odd case
check_sqrt_poly_commit(5);

// check even case
check_sqrt_poly_commit(6);
}

fn check_sqrt_poly_commit(num_vars: u32) {
let mut rng = ark_std::test_rng();
let num_vars = 5;
let len = 2_usize.pow(num_vars);
let Z: Vec<F> = (0..len).into_iter().map(|_| F::rand(&mut rng)).collect();
let r: Vec<F> = (0..num_vars)
Expand Down Expand Up @@ -331,21 +337,4 @@ mod tests {
);
assert!(res == true);
}

#[test]
fn test_odd() {
let mut rng = ark_std::test_rng();
let num_vars = 5;
let len = 2_usize.pow(num_vars);
let Z: Vec<F> = (0..len).into_iter().map(|_| F::rand(&mut rng)).collect();
let r: Vec<F> = (0..num_vars)
.into_iter()
.map(|_| F::rand(&mut rng))
.collect();

// let gens = MultilinearPC::<E>::setup(2, &mut rng);
// let (ck, vk) = MultilinearPC::<E>::trim(&gens, 2);

let mut pl: Polynomial<E> = Polynomial::from_evaluations(&Z.clone());
}
}

0 comments on commit df9e890

Please sign in to comment.