exam_dropout_model.Rmd
- Examine dropout model assumptions using ERCC spike-in data.
- Fig.1, sFig.1, sFig.2
overdisp_zeroinfl_pre_dropout.R
- Looking for overdispersion and zero-inflation in the pre-dropout count using scRNA-seq data based on the DECENT model.
- sFig.3, sFig.4
test_smfish.R
- Testing for overdispersion and zero-inflation in the smFISH data.
- sFig.5
misspecify_eta.R
- Plotting probability mass function of the observed data given various levels of misspecified eta.
- sFig.6
sim.R
- Simulation studies.
- Fig.2, Fig.3, sFig.7
tung.R
- Analyses of Tung et al. dataset.
- sFig.8
soumillon.R
- Analyses of Soumillon et al. dataset.
savas.R
- Analyses of Savas et al. dataset.
chen.R
- Analyses of Chen et al. dataset.
benchmark_plot.R
- Making benchmarking plots.
- Fig.4, Fig.5, Fig.6, sFig.9, sFig.10, sFig.11
func_de_methods.R
- Utility functions.
sim_rep.R
- Repeat simulation study 20 times.
r1_plots.R
- New plots for revision 1.
data.savas.rds
- The UMI count matrix of the Savas et al. data.
ct.savas.rds
- A vector denoting the two cell types in the Savas et al. data.
simdata_ZINB_BB_Tung6_OD_kb.RData
- Simulated dataset.
simdata_ZINB_BB_Tung6_OD_kb_010119/
- Another 20 simulated datasets.
ercc_length.txt
- Lengths of ERCC spike-ins.
cms_095046.txt
-
Information of ERCC spike-in mix.
-
Other input data can be directly downloaded from public repositories as noted in the scripts.
Tung_benckmark.rda
Soumillon_benckmark.rda
Savas_benckmark.rda
Chen_benckmark.rda
fpr.plots.tung.rda
fpr.plots.soumillon.rda
sim/
tung/
tung_nb/
soumillon/
savas/
chen/
zeisel/
zeisel_nb/
tasc/